A problem in Probability theoryIf $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence

How can I quit an app using Terminal?

Efficient way to transport a Stargate

Is HostGator storing my password in plaintext?

What is the best translation for "slot" in the context of multiplayer video games?

when is out of tune ok?

How to safely derail a train during transit?

Implement the Thanos sorting algorithm

Is the destination of a commercial flight important for the pilot?

Pole-zeros of a real-valued causal FIR system

Is there a problem with hiding "forgot password" until it's needed?

Sequence of Tenses: Translating the subjunctive

Opposite of a diet

Arithmetic mean geometric mean inequality unclear

Replace character with another only if repeated and not part of a word

Roman Numeral Treatment of Suspensions

Two monoidal structures and copowering

How can a function with a hole (removable discontinuity) equal a function with no hole?

Why are there no referendums in the US?

How to write papers efficiently when English isn't my first language?

How to pronounce the slash sign

Anatomically Correct Strange Women In Ponds Distributing Swords

How easy is it to start Magic from scratch?

Why escape if the_content isnt?

Go Pregnant or Go Home



A problem in Probability theory


If $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence













4












$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    3 hours ago















4












$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    3 hours ago













4












4








4


1



$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$




This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?







probability integration lp-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









Xin FuXin Fu

1568




1568











  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    3 hours ago
















  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    3 hours ago















$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago




$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$

Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$

Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago















5












$begingroup$

You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$

Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago













5












5








5





$begingroup$

You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$

Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$



You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$

Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$

Square this and you're done.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 3 hours ago









amsmathamsmath

3,364419




3,364419











  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago
















  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago















$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago




$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org