Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?If $A$ is infinite then it has two infinite subsets $B, C$ which are pairwise disjoint.Pairwise disjoint proofDistinction between the notions of pairwise disjointPairwise and Mutually disjoint setsIs the empty family of sets pairwise disjoint?Do Kolmogorov's axioms really need only disjointness rather than pairwise disjointness?Proof containing pairwise disjoint setsA set whose power set is pairwise disjoint?pairwise disjoint , or disjointProve that sets are pairwise disjoint

Why aren't there more Gauls like Obelix?

Why is there an extra space when I type "ls" on the Desktop?

Inorganic chemistry handbook with reaction lists

What is Tony Stark injecting into himself in Iron Man 3?

I am the person who abides by rules but breaks the rules . Who am I

Should we avoid writing fiction about historical events without extensive research?

Paper published similar to PhD thesis

Sort array by month and year

Generating a list with duplicate entries

Why does this boat have a landing pad? (SpaceX's GO Searcher) Any plans for propulsive capsule landings?

Is there a logarithm base for which the logarithm becomes an identity function?

Why restrict private health insurance?

Boss Telling direct supervisor I snitched

How to make sure I'm assertive enough in contact with subordinates?

Ultrafilters as a double dual

What can I do if someone tampers with my SSH public key?

Is this a crown race?

Unidentified signals on FT8 frequencies

How strong is the axiom of well-ordered choice?

Professor forcing me to attend a conference, I can't afford even with 50% funding

std::string vs const std::string& vs std::string_view

How does a sound wave propagate?

How spaceships determine each other's mass in space?

Was this cameo in Captain Marvel computer generated?



Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?


If $A$ is infinite then it has two infinite subsets $B, C$ which are pairwise disjoint.Pairwise disjoint proofDistinction between the notions of pairwise disjointPairwise and Mutually disjoint setsIs the empty family of sets pairwise disjoint?Do Kolmogorov's axioms really need only disjointness rather than pairwise disjointness?Proof containing pairwise disjoint setsA set whose power set is pairwise disjoint?pairwise disjoint , or disjointProve that sets are pairwise disjoint













14












$begingroup$


I don't see the ambiguity that 'Pairwise' resolves.



Surely if A,B,C are disjoint sets then they are pairwise disjoint and vice versa?



Or am I being dim?










share|cite|improve this question









$endgroup$
















    14












    $begingroup$


    I don't see the ambiguity that 'Pairwise' resolves.



    Surely if A,B,C are disjoint sets then they are pairwise disjoint and vice versa?



    Or am I being dim?










    share|cite|improve this question









    $endgroup$














      14












      14








      14


      2



      $begingroup$


      I don't see the ambiguity that 'Pairwise' resolves.



      Surely if A,B,C are disjoint sets then they are pairwise disjoint and vice versa?



      Or am I being dim?










      share|cite|improve this question









      $endgroup$




      I don't see the ambiguity that 'Pairwise' resolves.



      Surely if A,B,C are disjoint sets then they are pairwise disjoint and vice versa?



      Or am I being dim?







      elementary-set-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 10 hours ago









      John Lawrence AspdenJohn Lawrence Aspden

      31818




      31818




















          7 Answers
          7






          active

          oldest

          votes


















          11












          $begingroup$

          $1,2,2,3,1,3$ are disjoint but not pairwise disjoint.






          share|cite|improve this answer









          $endgroup$








          • 5




            $begingroup$
            Really? Who would call those disjoint sets?
            $endgroup$
            – John Lawrence Aspden
            10 hours ago






          • 12




            $begingroup$
            Everyone. Disjoint means their intersection is empty.
            $endgroup$
            – saulspatz
            10 hours ago






          • 7




            $begingroup$
            If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
            $endgroup$
            – drhab
            10 hours ago







          • 9




            $begingroup$
            So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
            $endgroup$
            – drhab
            9 hours ago







          • 7




            $begingroup$
            These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
            $endgroup$
            – Shalop
            8 hours ago



















          11












          $begingroup$

          As evidenced by the answers and comments on this page, the term "disjoint" is ambiguous - some use it to mean "pairwise disjoint", others use it to mean "empty intersection".



          Thus, for the sake of clarity, I'd recommend avoiding "disjoint" and using "pairwise disjoint".






          share|cite|improve this answer









          $endgroup$




















            4












            $begingroup$

            In this context disjoint means $A cap B cap C = emptyset$.






            share|cite|improve this answer









            $endgroup$








            • 7




              $begingroup$
              Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
              $endgroup$
              – Connor Harris
              10 hours ago










            • $begingroup$
              me neither, but four people have answered the question this way in four minutes!
              $endgroup$
              – John Lawrence Aspden
              10 hours ago










            • $begingroup$
              If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
              $endgroup$
              – Umberto P.
              10 hours ago











            • $begingroup$
              This is not the standard definition of disjoint. Google it if you like.
              $endgroup$
              – Marc van Leeuwen
              6 hours ago










            • $begingroup$
              @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
              $endgroup$
              – Brilliand
              3 hours ago


















            3












            $begingroup$

            The word "pairwise" in "pairwise disjoint" is superfluous: a collection of sets is disjoint if no element appears in more than one of the sets at a time, and this means that every pair of distinct sets in the collection has an empty intersection. However including the "pairwise" emphasizes that the property can be checked at the level of pairs from the collection (unlike for instance linear independence of vectors in linear algebra). A "disjoint union" is a union of pairwise disjoint sets; one does not say "pairwise disjoint union".






            share|cite|improve this answer









            $endgroup$




















              2












              $begingroup$

              More generally, sets are disjoint when their intersection is empty, but pairwise disjoint when any two of them are disjoint.






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                $endgroup$
                – Marc van Leeuwen
                6 hours ago










              • $begingroup$
                @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                $endgroup$
                – J.G.
                6 hours ago



















              1












              $begingroup$

              Consider the sets $A = 1,2$, $B = 2,3$, $C = 3, 1$. Then $Acap Bcap C = varnothing$, but $A,B,C$ are not pairwise disjoint.






              share|cite|improve this answer








              New contributor




              Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$




















                1












                $begingroup$

                Let $A=1,2, B=2,3,C=3,4$. Then the sets are disjoint because $Acap Bcap C=emptyset$, but not pairwise disjoint because you have pairs such as $A,B$ such that $Acap Bnot =emptyset$.






                share|cite|improve this answer











                $endgroup$












                • $begingroup$
                  Rats! What is the notation for an empty set?
                  $endgroup$
                  – Oscar Lanzi
                  10 hours ago










                • $begingroup$
                  Thank you, @jg.
                  $endgroup$
                  – Oscar Lanzi
                  10 hours ago










                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140228%2fwhy-do-we-say-pairwise-disjoint-rather-than-disjoint%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                7 Answers
                7






                active

                oldest

                votes








                7 Answers
                7






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                11












                $begingroup$

                $1,2,2,3,1,3$ are disjoint but not pairwise disjoint.






                share|cite|improve this answer









                $endgroup$








                • 5




                  $begingroup$
                  Really? Who would call those disjoint sets?
                  $endgroup$
                  – John Lawrence Aspden
                  10 hours ago






                • 12




                  $begingroup$
                  Everyone. Disjoint means their intersection is empty.
                  $endgroup$
                  – saulspatz
                  10 hours ago






                • 7




                  $begingroup$
                  If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                  $endgroup$
                  – drhab
                  10 hours ago







                • 9




                  $begingroup$
                  So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                  $endgroup$
                  – drhab
                  9 hours ago







                • 7




                  $begingroup$
                  These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                  $endgroup$
                  – Shalop
                  8 hours ago
















                11












                $begingroup$

                $1,2,2,3,1,3$ are disjoint but not pairwise disjoint.






                share|cite|improve this answer









                $endgroup$








                • 5




                  $begingroup$
                  Really? Who would call those disjoint sets?
                  $endgroup$
                  – John Lawrence Aspden
                  10 hours ago






                • 12




                  $begingroup$
                  Everyone. Disjoint means their intersection is empty.
                  $endgroup$
                  – saulspatz
                  10 hours ago






                • 7




                  $begingroup$
                  If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                  $endgroup$
                  – drhab
                  10 hours ago







                • 9




                  $begingroup$
                  So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                  $endgroup$
                  – drhab
                  9 hours ago







                • 7




                  $begingroup$
                  These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                  $endgroup$
                  – Shalop
                  8 hours ago














                11












                11








                11





                $begingroup$

                $1,2,2,3,1,3$ are disjoint but not pairwise disjoint.






                share|cite|improve this answer









                $endgroup$



                $1,2,2,3,1,3$ are disjoint but not pairwise disjoint.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 hours ago









                saulspatzsaulspatz

                16.6k31333




                16.6k31333







                • 5




                  $begingroup$
                  Really? Who would call those disjoint sets?
                  $endgroup$
                  – John Lawrence Aspden
                  10 hours ago






                • 12




                  $begingroup$
                  Everyone. Disjoint means their intersection is empty.
                  $endgroup$
                  – saulspatz
                  10 hours ago






                • 7




                  $begingroup$
                  If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                  $endgroup$
                  – drhab
                  10 hours ago







                • 9




                  $begingroup$
                  So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                  $endgroup$
                  – drhab
                  9 hours ago







                • 7




                  $begingroup$
                  These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                  $endgroup$
                  – Shalop
                  8 hours ago













                • 5




                  $begingroup$
                  Really? Who would call those disjoint sets?
                  $endgroup$
                  – John Lawrence Aspden
                  10 hours ago






                • 12




                  $begingroup$
                  Everyone. Disjoint means their intersection is empty.
                  $endgroup$
                  – saulspatz
                  10 hours ago






                • 7




                  $begingroup$
                  If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                  $endgroup$
                  – drhab
                  10 hours ago







                • 9




                  $begingroup$
                  So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                  $endgroup$
                  – drhab
                  9 hours ago







                • 7




                  $begingroup$
                  These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                  $endgroup$
                  – Shalop
                  8 hours ago








                5




                5




                $begingroup$
                Really? Who would call those disjoint sets?
                $endgroup$
                – John Lawrence Aspden
                10 hours ago




                $begingroup$
                Really? Who would call those disjoint sets?
                $endgroup$
                – John Lawrence Aspden
                10 hours ago




                12




                12




                $begingroup$
                Everyone. Disjoint means their intersection is empty.
                $endgroup$
                – saulspatz
                10 hours ago




                $begingroup$
                Everyone. Disjoint means their intersection is empty.
                $endgroup$
                – saulspatz
                10 hours ago




                7




                7




                $begingroup$
                If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                $endgroup$
                – drhab
                10 hours ago





                $begingroup$
                If sets $A_1,A_2,dots,A_n$ are said to be disjoint then usually it is meant that the sets are pairwise disjoint. See Wolfram for instance. In the other case one says simply that the sets have an empty intersection.
                $endgroup$
                – drhab
                10 hours ago





                9




                9




                $begingroup$
                So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                $endgroup$
                – drhab
                9 hours ago





                $begingroup$
                So be it. But actually I am the living proof that "everyone" in your first comment is not correct. Lots of times I heard "them" say things like: "we have $mu(bigcup_n=1^inftyA_n)=sum_n=1^inftymu(A_n)$ if the sets are disjoint" (so leaving out pairwise). I do that myself too. It is a good thing however to have a proper definition of this excluding ambiguities. So let's look at this as abuse of language.
                $endgroup$
                – drhab
                9 hours ago





                7




                7




                $begingroup$
                These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                $endgroup$
                – Shalop
                8 hours ago





                $begingroup$
                These sets are not disjoint, at least not by the modern usage of the word “disjoint,” which afaik is used interchangeably with “pairwise disjoint.”
                $endgroup$
                – Shalop
                8 hours ago












                11












                $begingroup$

                As evidenced by the answers and comments on this page, the term "disjoint" is ambiguous - some use it to mean "pairwise disjoint", others use it to mean "empty intersection".



                Thus, for the sake of clarity, I'd recommend avoiding "disjoint" and using "pairwise disjoint".






                share|cite|improve this answer









                $endgroup$

















                  11












                  $begingroup$

                  As evidenced by the answers and comments on this page, the term "disjoint" is ambiguous - some use it to mean "pairwise disjoint", others use it to mean "empty intersection".



                  Thus, for the sake of clarity, I'd recommend avoiding "disjoint" and using "pairwise disjoint".






                  share|cite|improve this answer









                  $endgroup$















                    11












                    11








                    11





                    $begingroup$

                    As evidenced by the answers and comments on this page, the term "disjoint" is ambiguous - some use it to mean "pairwise disjoint", others use it to mean "empty intersection".



                    Thus, for the sake of clarity, I'd recommend avoiding "disjoint" and using "pairwise disjoint".






                    share|cite|improve this answer









                    $endgroup$



                    As evidenced by the answers and comments on this page, the term "disjoint" is ambiguous - some use it to mean "pairwise disjoint", others use it to mean "empty intersection".



                    Thus, for the sake of clarity, I'd recommend avoiding "disjoint" and using "pairwise disjoint".







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 5 hours ago









                    BlueRaja - Danny PflughoeftBlueRaja - Danny Pflughoeft

                    5,61532843




                    5,61532843





















                        4












                        $begingroup$

                        In this context disjoint means $A cap B cap C = emptyset$.






                        share|cite|improve this answer









                        $endgroup$








                        • 7




                          $begingroup$
                          Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                          $endgroup$
                          – Connor Harris
                          10 hours ago










                        • $begingroup$
                          me neither, but four people have answered the question this way in four minutes!
                          $endgroup$
                          – John Lawrence Aspden
                          10 hours ago










                        • $begingroup$
                          If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                          $endgroup$
                          – Umberto P.
                          10 hours ago











                        • $begingroup$
                          This is not the standard definition of disjoint. Google it if you like.
                          $endgroup$
                          – Marc van Leeuwen
                          6 hours ago










                        • $begingroup$
                          @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                          $endgroup$
                          – Brilliand
                          3 hours ago















                        4












                        $begingroup$

                        In this context disjoint means $A cap B cap C = emptyset$.






                        share|cite|improve this answer









                        $endgroup$








                        • 7




                          $begingroup$
                          Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                          $endgroup$
                          – Connor Harris
                          10 hours ago










                        • $begingroup$
                          me neither, but four people have answered the question this way in four minutes!
                          $endgroup$
                          – John Lawrence Aspden
                          10 hours ago










                        • $begingroup$
                          If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                          $endgroup$
                          – Umberto P.
                          10 hours ago











                        • $begingroup$
                          This is not the standard definition of disjoint. Google it if you like.
                          $endgroup$
                          – Marc van Leeuwen
                          6 hours ago










                        • $begingroup$
                          @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                          $endgroup$
                          – Brilliand
                          3 hours ago













                        4












                        4








                        4





                        $begingroup$

                        In this context disjoint means $A cap B cap C = emptyset$.






                        share|cite|improve this answer









                        $endgroup$



                        In this context disjoint means $A cap B cap C = emptyset$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered 10 hours ago









                        Umberto P.Umberto P.

                        39.8k13267




                        39.8k13267







                        • 7




                          $begingroup$
                          Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                          $endgroup$
                          – Connor Harris
                          10 hours ago










                        • $begingroup$
                          me neither, but four people have answered the question this way in four minutes!
                          $endgroup$
                          – John Lawrence Aspden
                          10 hours ago










                        • $begingroup$
                          If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                          $endgroup$
                          – Umberto P.
                          10 hours ago











                        • $begingroup$
                          This is not the standard definition of disjoint. Google it if you like.
                          $endgroup$
                          – Marc van Leeuwen
                          6 hours ago










                        • $begingroup$
                          @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                          $endgroup$
                          – Brilliand
                          3 hours ago












                        • 7




                          $begingroup$
                          Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                          $endgroup$
                          – Connor Harris
                          10 hours ago










                        • $begingroup$
                          me neither, but four people have answered the question this way in four minutes!
                          $endgroup$
                          – John Lawrence Aspden
                          10 hours ago










                        • $begingroup$
                          If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                          $endgroup$
                          – Umberto P.
                          10 hours ago











                        • $begingroup$
                          This is not the standard definition of disjoint. Google it if you like.
                          $endgroup$
                          – Marc van Leeuwen
                          6 hours ago










                        • $begingroup$
                          @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                          $endgroup$
                          – Brilliand
                          3 hours ago







                        7




                        7




                        $begingroup$
                        Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                        $endgroup$
                        – Connor Harris
                        10 hours ago




                        $begingroup$
                        Is that a standard meaning? I never saw the term formally defined that way in four years of undergrad math classes.
                        $endgroup$
                        – Connor Harris
                        10 hours ago












                        $begingroup$
                        me neither, but four people have answered the question this way in four minutes!
                        $endgroup$
                        – John Lawrence Aspden
                        10 hours ago




                        $begingroup$
                        me neither, but four people have answered the question this way in four minutes!
                        $endgroup$
                        – John Lawrence Aspden
                        10 hours ago












                        $begingroup$
                        If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                        $endgroup$
                        – Umberto P.
                        10 hours ago





                        $begingroup$
                        If you define "disjoint" to mean "empty intersection" (which is the standard definition) then formally for a family of sets "disjoint" would mean the intersection of the entire family is empty unless stated otherwise. The use of the pleonastic term "pairwise" helps to avoid confusion.
                        $endgroup$
                        – Umberto P.
                        10 hours ago













                        $begingroup$
                        This is not the standard definition of disjoint. Google it if you like.
                        $endgroup$
                        – Marc van Leeuwen
                        6 hours ago




                        $begingroup$
                        This is not the standard definition of disjoint. Google it if you like.
                        $endgroup$
                        – Marc van Leeuwen
                        6 hours ago












                        $begingroup$
                        @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                        $endgroup$
                        – Brilliand
                        3 hours ago




                        $begingroup$
                        @MarcvanLeeuwen Be warned that Google likes to tell people what they want to hear. If you use it as support in an argument, there is a chance that Google will tell your opponent that he's right, while still telling you that you're right.
                        $endgroup$
                        – Brilliand
                        3 hours ago











                        3












                        $begingroup$

                        The word "pairwise" in "pairwise disjoint" is superfluous: a collection of sets is disjoint if no element appears in more than one of the sets at a time, and this means that every pair of distinct sets in the collection has an empty intersection. However including the "pairwise" emphasizes that the property can be checked at the level of pairs from the collection (unlike for instance linear independence of vectors in linear algebra). A "disjoint union" is a union of pairwise disjoint sets; one does not say "pairwise disjoint union".






                        share|cite|improve this answer









                        $endgroup$

















                          3












                          $begingroup$

                          The word "pairwise" in "pairwise disjoint" is superfluous: a collection of sets is disjoint if no element appears in more than one of the sets at a time, and this means that every pair of distinct sets in the collection has an empty intersection. However including the "pairwise" emphasizes that the property can be checked at the level of pairs from the collection (unlike for instance linear independence of vectors in linear algebra). A "disjoint union" is a union of pairwise disjoint sets; one does not say "pairwise disjoint union".






                          share|cite|improve this answer









                          $endgroup$















                            3












                            3








                            3





                            $begingroup$

                            The word "pairwise" in "pairwise disjoint" is superfluous: a collection of sets is disjoint if no element appears in more than one of the sets at a time, and this means that every pair of distinct sets in the collection has an empty intersection. However including the "pairwise" emphasizes that the property can be checked at the level of pairs from the collection (unlike for instance linear independence of vectors in linear algebra). A "disjoint union" is a union of pairwise disjoint sets; one does not say "pairwise disjoint union".






                            share|cite|improve this answer









                            $endgroup$



                            The word "pairwise" in "pairwise disjoint" is superfluous: a collection of sets is disjoint if no element appears in more than one of the sets at a time, and this means that every pair of distinct sets in the collection has an empty intersection. However including the "pairwise" emphasizes that the property can be checked at the level of pairs from the collection (unlike for instance linear independence of vectors in linear algebra). A "disjoint union" is a union of pairwise disjoint sets; one does not say "pairwise disjoint union".







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 6 hours ago









                            Marc van LeeuwenMarc van Leeuwen

                            88k5111226




                            88k5111226





















                                2












                                $begingroup$

                                More generally, sets are disjoint when their intersection is empty, but pairwise disjoint when any two of them are disjoint.






                                share|cite|improve this answer









                                $endgroup$








                                • 1




                                  $begingroup$
                                  I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                  $endgroup$
                                  – Marc van Leeuwen
                                  6 hours ago










                                • $begingroup$
                                  @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                  $endgroup$
                                  – J.G.
                                  6 hours ago
















                                2












                                $begingroup$

                                More generally, sets are disjoint when their intersection is empty, but pairwise disjoint when any two of them are disjoint.






                                share|cite|improve this answer









                                $endgroup$








                                • 1




                                  $begingroup$
                                  I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                  $endgroup$
                                  – Marc van Leeuwen
                                  6 hours ago










                                • $begingroup$
                                  @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                  $endgroup$
                                  – J.G.
                                  6 hours ago














                                2












                                2








                                2





                                $begingroup$

                                More generally, sets are disjoint when their intersection is empty, but pairwise disjoint when any two of them are disjoint.






                                share|cite|improve this answer









                                $endgroup$



                                More generally, sets are disjoint when their intersection is empty, but pairwise disjoint when any two of them are disjoint.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered 10 hours ago









                                J.G.J.G.

                                29.1k22845




                                29.1k22845







                                • 1




                                  $begingroup$
                                  I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                  $endgroup$
                                  – Marc van Leeuwen
                                  6 hours ago










                                • $begingroup$
                                  @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                  $endgroup$
                                  – J.G.
                                  6 hours ago













                                • 1




                                  $begingroup$
                                  I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                  $endgroup$
                                  – Marc van Leeuwen
                                  6 hours ago










                                • $begingroup$
                                  @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                  $endgroup$
                                  – J.G.
                                  6 hours ago








                                1




                                1




                                $begingroup$
                                I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                $endgroup$
                                – Marc van Leeuwen
                                6 hours ago




                                $begingroup$
                                I have never seen this sense of disjoint for more than two sets been defined or used in mathematics. The Wikipedia article for disjoint sets does not mention it, and the notion of "disjoint union" definitely refers to pairwise disjoint sets.
                                $endgroup$
                                – Marc van Leeuwen
                                6 hours ago












                                $begingroup$
                                @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                $endgroup$
                                – J.G.
                                6 hours ago





                                $begingroup$
                                @MarcvanLeeuwen Three-or-more sets that are disjoint-but-not-pairwise-disjoint in the sense I describe probably warrant some name, but as you note it's not usually the nomenclature I mentioned, probably because it makes "pairwise" compulsory more than anyone wants to write it.
                                $endgroup$
                                – J.G.
                                6 hours ago












                                1












                                $begingroup$

                                Consider the sets $A = 1,2$, $B = 2,3$, $C = 3, 1$. Then $Acap Bcap C = varnothing$, but $A,B,C$ are not pairwise disjoint.






                                share|cite|improve this answer








                                New contributor




                                Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                $endgroup$

















                                  1












                                  $begingroup$

                                  Consider the sets $A = 1,2$, $B = 2,3$, $C = 3, 1$. Then $Acap Bcap C = varnothing$, but $A,B,C$ are not pairwise disjoint.






                                  share|cite|improve this answer








                                  New contributor




                                  Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                  Check out our Code of Conduct.






                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Consider the sets $A = 1,2$, $B = 2,3$, $C = 3, 1$. Then $Acap Bcap C = varnothing$, but $A,B,C$ are not pairwise disjoint.






                                    share|cite|improve this answer








                                    New contributor




                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.






                                    $endgroup$



                                    Consider the sets $A = 1,2$, $B = 2,3$, $C = 3, 1$. Then $Acap Bcap C = varnothing$, but $A,B,C$ are not pairwise disjoint.







                                    share|cite|improve this answer








                                    New contributor




                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.









                                    share|cite|improve this answer



                                    share|cite|improve this answer






                                    New contributor




                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.









                                    answered 10 hours ago









                                    Kyle DuffyKyle Duffy

                                    112




                                    112




                                    New contributor




                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.





                                    New contributor





                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.






                                    Kyle Duffy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.





















                                        1












                                        $begingroup$

                                        Let $A=1,2, B=2,3,C=3,4$. Then the sets are disjoint because $Acap Bcap C=emptyset$, but not pairwise disjoint because you have pairs such as $A,B$ such that $Acap Bnot =emptyset$.






                                        share|cite|improve this answer











                                        $endgroup$












                                        • $begingroup$
                                          Rats! What is the notation for an empty set?
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago










                                        • $begingroup$
                                          Thank you, @jg.
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago















                                        1












                                        $begingroup$

                                        Let $A=1,2, B=2,3,C=3,4$. Then the sets are disjoint because $Acap Bcap C=emptyset$, but not pairwise disjoint because you have pairs such as $A,B$ such that $Acap Bnot =emptyset$.






                                        share|cite|improve this answer











                                        $endgroup$












                                        • $begingroup$
                                          Rats! What is the notation for an empty set?
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago










                                        • $begingroup$
                                          Thank you, @jg.
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago













                                        1












                                        1








                                        1





                                        $begingroup$

                                        Let $A=1,2, B=2,3,C=3,4$. Then the sets are disjoint because $Acap Bcap C=emptyset$, but not pairwise disjoint because you have pairs such as $A,B$ such that $Acap Bnot =emptyset$.






                                        share|cite|improve this answer











                                        $endgroup$



                                        Let $A=1,2, B=2,3,C=3,4$. Then the sets are disjoint because $Acap Bcap C=emptyset$, but not pairwise disjoint because you have pairs such as $A,B$ such that $Acap Bnot =emptyset$.







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited 10 hours ago









                                        J.G.

                                        29.1k22845




                                        29.1k22845










                                        answered 10 hours ago









                                        Oscar LanziOscar Lanzi

                                        13k12136




                                        13k12136











                                        • $begingroup$
                                          Rats! What is the notation for an empty set?
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago










                                        • $begingroup$
                                          Thank you, @jg.
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago
















                                        • $begingroup$
                                          Rats! What is the notation for an empty set?
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago










                                        • $begingroup$
                                          Thank you, @jg.
                                          $endgroup$
                                          – Oscar Lanzi
                                          10 hours ago















                                        $begingroup$
                                        Rats! What is the notation for an empty set?
                                        $endgroup$
                                        – Oscar Lanzi
                                        10 hours ago




                                        $begingroup$
                                        Rats! What is the notation for an empty set?
                                        $endgroup$
                                        – Oscar Lanzi
                                        10 hours ago












                                        $begingroup$
                                        Thank you, @jg.
                                        $endgroup$
                                        – Oscar Lanzi
                                        10 hours ago




                                        $begingroup$
                                        Thank you, @jg.
                                        $endgroup$
                                        – Oscar Lanzi
                                        10 hours ago

















                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140228%2fwhy-do-we-say-pairwise-disjoint-rather-than-disjoint%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                                        Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                                        Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org