Numerical value of Determinant far from what it is supposed to beFind Determinant/or Row Reduce parameter dependent matrixEigenvalues and Determinant of a large matrixSolving determinant of a Kronecker product of matrices gives a numerical error - why?Analytic determinant of a sparse 25x25 matrix?Eigenvectors of numerical matrixmore numerically accurate inverse matrixSolving simultaneous and determinant given constant value and variable T (temperature)Determinant of Large Sparse MatrixObtaining the determinant from a LinearSolveFunction objectBad result from evaluating a determinant
Can the Witch Sight warlock invocation see through the Mirror Image spell?
Idiom for feeling after taking risk and someone else being rewarded
How exactly does an Ethernet collision happen in the cable, since nodes use different circuits for Tx and Rx?
Giving a career talk in my old university, how prominently should I tell students my salary?
"If + would" conditional in present perfect tense
Is divide-by-zero a security vulnerability?
What will happen if my luggage gets delayed?
If nine coins are tossed, what is the probability that the number of heads is even?
I reported the illegal activity of my boss to his boss. My boss found out. Now I am being punished. What should I do?
Can I take the the bonus-action attack from Two-Weapon Fighting without taking the Attack action?
Why is there an extra space when I type "ls" on the Desktop?
Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?
Does an unused member variable take up memory?
Do similar matrices have same characteristic equations?
Will expression retain the same definition if particle is changed?
School performs periodic password audits. Is my password compromised?
LaTeX logo in tufte-book
How do spaceships determine each other's mass in space?
Create chunks from an array
Do Cubics always have one real root?
Why is it common in European airports not to display the gate for flights until around 45-90 minutes before departure, unlike other places?
Has a sovereign Communist government ever run, and conceded loss, on a fair election?
Short scifi story where reproductive organs are converted to produce "materials", pregnant protagonist is "found fit" to be a mother
Can I negotiate a patent idea for a raise, under French law?
Numerical value of Determinant far from what it is supposed to be
Find Determinant/or Row Reduce parameter dependent matrixEigenvalues and Determinant of a large matrixSolving determinant of a Kronecker product of matrices gives a numerical error - why?Analytic determinant of a sparse 25x25 matrix?Eigenvectors of numerical matrixmore numerically accurate inverse matrixSolving simultaneous and determinant given constant value and variable T (temperature)Determinant of Large Sparse MatrixObtaining the determinant from a LinearSolveFunction objectBad result from evaluating a determinant
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
h -> -0.744736 + 4.42008 I
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat=0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
linear-algebra
New contributor
$endgroup$
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
h -> -0.744736 + 4.42008 I
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat=0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
linear-algebra
New contributor
$endgroup$
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
4 hours ago
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
h -> -0.744736 + 4.42008 I
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat=0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
linear-algebra
New contributor
$endgroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
h -> -0.744736 + 4.42008 I
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat=0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
linear-algebra
linear-algebra
New contributor
New contributor
edited 1 hour ago
J. M. is computer-less♦
97.3k10303463
97.3k10303463
New contributor
asked 4 hours ago
NilsNils
111
111
New contributor
New contributor
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
4 hours ago
add a comment |
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
4 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
4 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
4 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
edited 4 hours ago
answered 4 hours ago
MarcoBMarcoB
37.3k556113
37.3k556113
add a comment |
add a comment |
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
4 hours ago