Is a linearly independent set whose span is dense a Schauder basis? The Next CEO of Stack OverflowCoordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis

Is it possible to create a QR code using text?

Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?

Compensation for working overtime on Saturdays

Another proof that dividing by 0 does not exist -- is it right?

Gauss' Posthumous Publications?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Compilation of a 2d array and a 1d array

Could you use a laser beam as a modulated carrier wave for radio signal?

Does int main() need a declaration on C++?

Is it reasonable to ask other researchers to send me their previous grant applications?

Calculating discount not working

Car headlights in a world without electricity

"Eavesdropping" vs "Listen in on"

Mathematica command that allows it to read my intentions

Does the Idaho Potato Commission associate potato skins with healthy eating?

Cannot restore registry to default in Windows 10?

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

Are British MPs missing the point, with these 'Indicative Votes'?

Why does freezing point matter when picking cooler ice packs?

Salesforce opportunity stages

Is there a rule of thumb for determining the amount one should accept for of a settlement offer?

Prodigo = pro + ago?

Ising model simulation

Can Sri Krishna be called 'a person'?



Is a linearly independent set whose span is dense a Schauder basis?



The Next CEO of Stack OverflowCoordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis










3












$begingroup$


If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



If not, does anyone know of any counterexamples?










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



    If not, does anyone know of any counterexamples?










    share|cite|improve this question









    $endgroup$














      3












      3








      3


      1



      $begingroup$


      If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



      If not, does anyone know of any counterexamples?










      share|cite|improve this question









      $endgroup$




      If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



      If not, does anyone know of any counterexamples?







      linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      Keshav SrinivasanKeshav Srinivasan

      2,39121446




      2,39121446




















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



          A Schauder basis is, in general, much harder to construct than a set with dense span.



          Since Enflo we know that there are separable Banach spaces (hence they have countable, dense, linearly independent set) that have no Schauder basis at all.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8












            $begingroup$

            No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



            A Schauder basis is, in general, much harder to construct than a set with dense span.



            Since Enflo we know that there are separable Banach spaces (hence they have countable, dense, linearly independent set) that have no Schauder basis at all.






            share|cite|improve this answer









            $endgroup$

















              8












              $begingroup$

              No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



              A Schauder basis is, in general, much harder to construct than a set with dense span.



              Since Enflo we know that there are separable Banach spaces (hence they have countable, dense, linearly independent set) that have no Schauder basis at all.






              share|cite|improve this answer









              $endgroup$















                8












                8








                8





                $begingroup$

                No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



                A Schauder basis is, in general, much harder to construct than a set with dense span.



                Since Enflo we know that there are separable Banach spaces (hence they have countable, dense, linearly independent set) that have no Schauder basis at all.






                share|cite|improve this answer









                $endgroup$



                No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



                A Schauder basis is, in general, much harder to construct than a set with dense span.



                Since Enflo we know that there are separable Banach spaces (hence they have countable, dense, linearly independent set) that have no Schauder basis at all.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                GEdgarGEdgar

                63.3k268172




                63.3k268172



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                    Are there any comparative studies done between Ashtavakra Gita and Buddhim?How is it wrong to believe that a self exists, or that it doesn't?Can you criticise or improve Ven. Bodhi's description of MahayanaWas the doctrine of 'Anatta', accepted as doctrine by modern Buddhism, actually taught by the Buddha?Relationship between Buddhism, Hinduism and Yoga?Comparison of Nirvana, Tao and Brahman/AtmaIs there a distinction between “ego identity” and “craving/hating”?Are there many differences between Taoism and Buddhism?Loss of “faith” in buddhismSimilarity between creation in Abrahamic religions and beginning of life in Earth mentioned Agganna Sutta?Are there studies about the difference between meditating in the morning versus in the evening?Can one follow Hinduism and Buddhism at the same time?Are there any prohibitions on participating in other religion's practices?Psychology of 'flow'

                    Where is the suspend/hibernate button in GNOME Shell? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)No suspend option in UI on Bionic BeaverHow can I set sleep mode in ubuntu18.04 LTS and what is the short cut key to do so?17.10 suspend not availableUbuntu 18.04 LTS missing sleep optionUbuntu 18.04 LTS - missing suspend option when power button is pressedHow to put Thinkpad X1 Extreme to sleep in Ubuntu 18.10?Suspend Button in interactive power button menu18.04 - Keep programs running after logging outway to disable Hibernate from within gconf-editor so button disappears?How can I hibernate from GNOME Shell?How can I hibernate/suspend from the command line and do so at a specific timeNo permission to suspend/hibernate after upgrading to 12.10MATE - Missing Suspend and Hibernate buttons, pressing power button shutdowns system immediatelyUbuntu 14.04: Suspend, Hibernate and Suspend-hybrid in the menu?Change “power-button-action” comand for “hibernate” option in GNOME 3.18Shutdown / Power off button does always go to suspend on 17.10Hibernate after suspend stopped working in 17.10Why doesn't the keyboard screenshot button work on Ubuntu with GNOME shell?