Advance Calculus Limit question The Next CEO of Stack OverflowLimit finding of an indeterminate formI need compute a rational limit that involves rootsComplex Limit Without L'hopital'sLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleSolving limit of radicals without L'Hopital $lim_xto 64 dfracsqrt x - 8sqrt[3] x - 4 $Solve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Find a limit of a function W/OUT l'Hopital's rule.Compute $lim_x rightarrow 4 frac(2x^2 - 7x -4)(-x^2 + 8x - 16)$

Is this a new Fibonacci Identity?

Oldie but Goldie

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Early programmable calculators with RS-232

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

Another proof that dividing by 0 does not exist -- is it right?

How can I separate the number from the unit in argument?

Finitely generated matrix groups whose eigenvalues are all algebraic

Strange use of "whether ... than ..." in official text

What steps are necessary to read a Modern SSD in Medieval Europe?

Does the Idaho Potato Commission associate potato skins with healthy eating?

What difference does it make matching a word with/without a trailing whitespace?

Avoiding the "not like other girls" trope?

pgfplots: How to draw a tangent graph below two others?

Identify and count spells (Distinctive events within each group)

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Is it possible to make a 9x9 table fit within the default margins?

Why was Sir Cadogan fired?

That's an odd coin - I wonder why

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Does Germany produce more waste than the US?

How to coordinate airplane tickets?

How can the PCs determine if an item is a phylactery?

Is it a bad idea to plug the other end of ESD strap to wall ground?



Advance Calculus Limit question



The Next CEO of Stack OverflowLimit finding of an indeterminate formI need compute a rational limit that involves rootsComplex Limit Without L'hopital'sLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleSolving limit of radicals without L'Hopital $lim_xto 64 dfracsqrt x - 8sqrt[3] x - 4 $Solve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Find a limit of a function W/OUT l'Hopital's rule.Compute $lim_x rightarrow 4 frac(2x^2 - 7x -4)(-x^2 + 8x - 16)$










1












$begingroup$


I'm trying to compute this limit without the use of L'Hopital's rule:



$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$



I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I'm trying to compute this limit without the use of L'Hopital's rule:



    $$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$



    I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I'm trying to compute this limit without the use of L'Hopital's rule:



      $$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$



      I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?










      share|cite|improve this question











      $endgroup$




      I'm trying to compute this limit without the use of L'Hopital's rule:



      $$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$



      I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?







      calculus limits limits-without-lhopital






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      Foobaz John

      22.9k41552




      22.9k41552










      asked 6 hours ago









      Kevin CalderonKevin Calderon

      463




      463




















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          Write the limit as
          $$
          lim_xto 0+frac1+4^-2/x-1+4^-2/x
          $$

          and use the fact that
          $$
          lim_xto 0+frac-2x=-infty.
          $$

          to find that the limit equals $-1$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            A substitution can be helpful, as it transforms the expression into a rational function:



            • Set $y=4^frac1x$ and consider $y to +infty$

            begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
            & stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
            & = & fracfrac1y^2+1frac1y^2-1 \
            & stackrely to +inftylongrightarrow & frac0+10-1 = -1
            endeqnarray*






            share|cite|improve this answer









            $endgroup$




















              0












              $begingroup$

              $$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$



              Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                4












                $begingroup$

                Write the limit as
                $$
                lim_xto 0+frac1+4^-2/x-1+4^-2/x
                $$

                and use the fact that
                $$
                lim_xto 0+frac-2x=-infty.
                $$

                to find that the limit equals $-1$.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  Write the limit as
                  $$
                  lim_xto 0+frac1+4^-2/x-1+4^-2/x
                  $$

                  and use the fact that
                  $$
                  lim_xto 0+frac-2x=-infty.
                  $$

                  to find that the limit equals $-1$.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    Write the limit as
                    $$
                    lim_xto 0+frac1+4^-2/x-1+4^-2/x
                    $$

                    and use the fact that
                    $$
                    lim_xto 0+frac-2x=-infty.
                    $$

                    to find that the limit equals $-1$.






                    share|cite|improve this answer









                    $endgroup$



                    Write the limit as
                    $$
                    lim_xto 0+frac1+4^-2/x-1+4^-2/x
                    $$

                    and use the fact that
                    $$
                    lim_xto 0+frac-2x=-infty.
                    $$

                    to find that the limit equals $-1$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 5 hours ago









                    Foobaz JohnFoobaz John

                    22.9k41552




                    22.9k41552





















                        2












                        $begingroup$

                        A substitution can be helpful, as it transforms the expression into a rational function:



                        • Set $y=4^frac1x$ and consider $y to +infty$

                        begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
                        & stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
                        & = & fracfrac1y^2+1frac1y^2-1 \
                        & stackrely to +inftylongrightarrow & frac0+10-1 = -1
                        endeqnarray*






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          A substitution can be helpful, as it transforms the expression into a rational function:



                          • Set $y=4^frac1x$ and consider $y to +infty$

                          begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
                          & stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
                          & = & fracfrac1y^2+1frac1y^2-1 \
                          & stackrely to +inftylongrightarrow & frac0+10-1 = -1
                          endeqnarray*






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            A substitution can be helpful, as it transforms the expression into a rational function:



                            • Set $y=4^frac1x$ and consider $y to +infty$

                            begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
                            & stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
                            & = & fracfrac1y^2+1frac1y^2-1 \
                            & stackrely to +inftylongrightarrow & frac0+10-1 = -1
                            endeqnarray*






                            share|cite|improve this answer









                            $endgroup$



                            A substitution can be helpful, as it transforms the expression into a rational function:



                            • Set $y=4^frac1x$ and consider $y to +infty$

                            begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
                            & stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
                            & = & fracfrac1y^2+1frac1y^2-1 \
                            & stackrely to +inftylongrightarrow & frac0+10-1 = -1
                            endeqnarray*







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            trancelocationtrancelocation

                            13.4k1827




                            13.4k1827





















                                0












                                $begingroup$

                                $$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$



                                Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.






                                share|cite|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  $$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$



                                  Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.






                                  share|cite|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    $$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$



                                    Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.






                                    share|cite|improve this answer









                                    $endgroup$



                                    $$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$



                                    Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 27 mins ago









                                    Paras KhoslaParas Khosla

                                    2,758423




                                    2,758423



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                                        Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                                        Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org