Irreducibility of a simple polynomialShow $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$
How do I define a right arrow with bar in LaTeX?
Applicability of Single Responsibility Principle
How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?
Have I saved too much for retirement so far?
Was Spock the First Vulcan in Starfleet?
What would happen if the UK refused to take part in EU Parliamentary elections?
What is the intuitive meaning of having a linear relationship between the logs of two variables?
Using parameter substitution on a Bash array
Time travel short story where a man arrives in the late 19th century in a time machine and then sends the machine back into the past
Valid Badminton Score?
Increase performance creating Mandelbrot set in python
Where in the Bible does the greeting ("Dominus Vobiscum") used at Mass come from?
Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?
Should my PhD thesis be submitted under my legal name?
How will losing mobility of one hand affect my career as a programmer?
Why is delta-v is the most useful quantity for planning space travel?
Curses work by shouting - How to avoid collateral damage?
Is exact Kanji stroke length important?
What would be the benefits of having both a state and local currencies?
Mapping a list into a phase plot
What is the term when two people sing in harmony, but they aren't singing the same notes?
Greatest common substring
Opposite of a diet
Is there any reason not to eat food that's been dropped on the surface of the moon?
Irreducibility of a simple polynomial
Show $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
add a comment |
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago
add a comment |
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
abstract-algebra field-theory irreducible-polynomials
asked 5 hours ago
JonHalesJonHales
520311
520311
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago
add a comment |
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago
2
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
New contributor
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
New contributor
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
New contributor
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
New contributor
$endgroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
New contributor
New contributor
answered 5 hours ago
EurekaEureka
25611
25611
New contributor
New contributor
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
add a comment |
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
5 hours ago
1
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
4 hours ago
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
answered 5 hours ago
egregegreg
185k1486206
185k1486206
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
5 hours ago