Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal

Replacing Windows 7 security updates with anti-virus?

Is it true that real estate prices mainly go up?

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

Is a lawful good "antagonist" effective?

Making a sword in the stone, in a medieval world without magic

Brexit - No Deal Rejection

Distribution of Maximum Likelihood Estimator

Why do Australian milk farmers need to protest supermarkets' milk price?

Why would a flight no longer considered airworthy be redirected like this?

PTIJ: Who should pay for Uber rides: the child or the parent?

PlotLabels with equations not expressions

My adviser wants to be the first author

How could a female member of a species produce eggs unto death?

Use of プラトニック in this sentence?

How to deal with taxi scam when on vacation?

An Accountant Seeks the Help of a Mathematician

Is it normal that my co-workers at a fitness company criticize my food choices?

Employee lack of ownership

How is the Swiss post e-voting system supposed to work, and how was it wrong?

How to generate globally unique ids for different tables of the same database?

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

What is the greatest age difference between a married couple in Tanach?

Why are the outputs of printf and std::cout different

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?



Does this property of comaximal ideals always holds?


Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal













5












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    2 hours ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    2 hours ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    2 hours ago
















5












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    2 hours ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    2 hours ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    2 hours ago














5












5








5


1



$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$




I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?







abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Math LoverMath Lover

1,029315




1,029315











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    2 hours ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    2 hours ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    2 hours ago

















  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    2 hours ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    2 hours ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    2 hours ago
















$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago




$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago












$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago




$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago




1




1




$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago





$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago











2 Answers
2






active

oldest

votes


















5












$begingroup$

First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



    Therefore, that property is not satisfied in general.



    Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



      Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




      Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






      share|cite|improve this answer











      $endgroup$

















        5












        $begingroup$

        First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



        Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




        Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






        share|cite|improve this answer











        $endgroup$















          5












          5








          5





          $begingroup$

          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






          share|cite|improve this answer











          $endgroup$



          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          Alex MathersAlex Mathers

          11.1k21344




          11.1k21344





















              4












              $begingroup$

              Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



              Therefore, that property is not satisfied in general.



              Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






              share|cite|improve this answer











              $endgroup$

















                4












                $begingroup$

                Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                Therefore, that property is not satisfied in general.



                Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






                share|cite|improve this answer











                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Therefore, that property is not satisfied in general.



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






                  share|cite|improve this answer











                  $endgroup$



                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Therefore, that property is not satisfied in general.



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 49 mins ago

























                  answered 1 hour ago









                  user647486user647486

                  613




                  613



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                      Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                      Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org