Define, (actually define) the “stability” and “energy” of a compoundWhy six C atoms are usually seen in cyclic compounds?Why does attraction always cause release of energy making the system more stable?What's causing my energy calculations to be wrong?Workflow for many-molecule/many-conformer calculations in Spartan, GAMESS, AND GaussianWhich lone pairs/bonding pairs go into which pi molecular orbitals?Can a reaction of the form A + B → AB ever be endothermic?Difference between lattice energy and thermal stabilitystability and energy gapHow is chemical energy stored in carbonThe pyridine/benzene stability 'paradox'?

What has been your most complicated TikZ drawing?

Is it true that real estate prices mainly go up?

Dot in front of file

Latest web browser compatible with Windows 98

Who is our nearest planetary neighbor, on average?

Know when to turn notes upside-down(eighth notes, sixteen notes, etc.)

Meaning of "SEVERA INDEOVI VAS" from 3rd Century slab

Making a sword in the stone, in a medieval world without magic

Rejected in 4th interview round citing insufficient years of experience

Make a transparent 448*448 image

Welcoming 2019 Pi day: How to draw the letter π?

Why doesn't the EU now just force the UK to choose between referendum and no-deal?

Informing my boss about remarks from a nasty colleague

Life insurance that covers only simultaneous/dual deaths

Brexit - No Deal Rejection

Why are the outputs of printf and std::cout different

Why using two cd commands in bash script does not execute the second command

Is it possible to upcast ritual spells?

What is the greatest age difference between a married couple in Tanach?

Employee lack of ownership

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

It's a yearly task, alright

Official degrees of earth’s rotation per day

Why must traveling waves have the same amplitude to form a standing wave?



Define, (actually define) the “stability” and “energy” of a compound


Why six C atoms are usually seen in cyclic compounds?Why does attraction always cause release of energy making the system more stable?What's causing my energy calculations to be wrong?Workflow for many-molecule/many-conformer calculations in Spartan, GAMESS, AND GaussianWhich lone pairs/bonding pairs go into which pi molecular orbitals?Can a reaction of the form A + B → AB ever be endothermic?Difference between lattice energy and thermal stabilitystability and energy gapHow is chemical energy stored in carbonThe pyridine/benzene stability 'paradox'?













2












$begingroup$


When we say a conformer or compound is of "higher energy" than another, are we quantifying energy in terms of the bond strength? Or are we going off of how much energy it takes to break the bond? I don't think we can just assign energies to each compound... so what is this based off of?



One might answer that its based off of stability. Well, what is "Stability?" Is it how rigid/strong the bonds are? Is it how reactive the compound is?



Often times i find myself reading explanations with circular language on this topic. A higher energy conformer means lower stability or A stable compound is one that has low energy. I'm finding these definitions to be crazy ambiguous, and don't thoroughly define what these are.



If someone can clearly explain this in terms that a first year undergraduate student can understand, you have earned my gratitude.










share|improve this question







New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    There's more than one kind of stability...
    $endgroup$
    – Zhe
    1 hour ago










  • $begingroup$
    Energy is generally a free energy.
    $endgroup$
    – Zhe
    1 hour ago















2












$begingroup$


When we say a conformer or compound is of "higher energy" than another, are we quantifying energy in terms of the bond strength? Or are we going off of how much energy it takes to break the bond? I don't think we can just assign energies to each compound... so what is this based off of?



One might answer that its based off of stability. Well, what is "Stability?" Is it how rigid/strong the bonds are? Is it how reactive the compound is?



Often times i find myself reading explanations with circular language on this topic. A higher energy conformer means lower stability or A stable compound is one that has low energy. I'm finding these definitions to be crazy ambiguous, and don't thoroughly define what these are.



If someone can clearly explain this in terms that a first year undergraduate student can understand, you have earned my gratitude.










share|improve this question







New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    There's more than one kind of stability...
    $endgroup$
    – Zhe
    1 hour ago










  • $begingroup$
    Energy is generally a free energy.
    $endgroup$
    – Zhe
    1 hour ago













2












2








2





$begingroup$


When we say a conformer or compound is of "higher energy" than another, are we quantifying energy in terms of the bond strength? Or are we going off of how much energy it takes to break the bond? I don't think we can just assign energies to each compound... so what is this based off of?



One might answer that its based off of stability. Well, what is "Stability?" Is it how rigid/strong the bonds are? Is it how reactive the compound is?



Often times i find myself reading explanations with circular language on this topic. A higher energy conformer means lower stability or A stable compound is one that has low energy. I'm finding these definitions to be crazy ambiguous, and don't thoroughly define what these are.



If someone can clearly explain this in terms that a first year undergraduate student can understand, you have earned my gratitude.










share|improve this question







New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




When we say a conformer or compound is of "higher energy" than another, are we quantifying energy in terms of the bond strength? Or are we going off of how much energy it takes to break the bond? I don't think we can just assign energies to each compound... so what is this based off of?



One might answer that its based off of stability. Well, what is "Stability?" Is it how rigid/strong the bonds are? Is it how reactive the compound is?



Often times i find myself reading explanations with circular language on this topic. A higher energy conformer means lower stability or A stable compound is one that has low energy. I'm finding these definitions to be crazy ambiguous, and don't thoroughly define what these are.



If someone can clearly explain this in terms that a first year undergraduate student can understand, you have earned my gratitude.







organic-chemistry energy stability conformers






share|improve this question







New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









H.MH.M

111




111




New contributor




H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






H.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    There's more than one kind of stability...
    $endgroup$
    – Zhe
    1 hour ago










  • $begingroup$
    Energy is generally a free energy.
    $endgroup$
    – Zhe
    1 hour ago
















  • $begingroup$
    There's more than one kind of stability...
    $endgroup$
    – Zhe
    1 hour ago










  • $begingroup$
    Energy is generally a free energy.
    $endgroup$
    – Zhe
    1 hour ago















$begingroup$
There's more than one kind of stability...
$endgroup$
– Zhe
1 hour ago




$begingroup$
There's more than one kind of stability...
$endgroup$
– Zhe
1 hour ago












$begingroup$
Energy is generally a free energy.
$endgroup$
– Zhe
1 hour ago




$begingroup$
Energy is generally a free energy.
$endgroup$
– Zhe
1 hour ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

As a chemist, I would agree that textbooks are not clear about the term stability and energy. It is not your fault and undergraduate organic chemistry books make the situation worse. I cannot recall the text, it was an old book, however it clearly said that stability of a compound does not mean anything. We should always ask, stability with respect to what? Are we talking about thermodynamic stability or kinetic stability? For example H2+O2 mixture is not stable. This statement is meaningless because we are not saying stability with respect to what? This mixture should form water right away but people actually waited for 30 years and did not find much water in a mixture of H2 and O2. Kinetically this mixture is not stable and it will react violently once you provide the right activation energy. When you are reading about stability, ask this question yourself.



In the same vein, the term energy should also be clarified by authors. As a crude analogy is that you can think of energy as the potential energy of the whole molecule when the authors talk about conformers. Have a overall picture of the molecule. Imagine two springs, A) one which is less stretched and the other one (B) is more stretched. You can say spring B has more (potential) energy than (A). An eclipsed conformer has higher potential energy (overall, no need to think locally) than a staggered one.






share|improve this answer









$endgroup$




















    2












    $begingroup$

    The answer is complicated because there are different kinds of stability and when we talk about energy, we also can mean different kinds of energy.



    When we speak of energy, we generally refer to a free energy. Your normal laboratory setup is an open-air, constant-pressure system, so we use Gibbs free energy. If you were working with bomb calorimeters, you'd want to use Helmholtz free energy for constant-volume processes.



    Note importantly, that energies are relative. "What is the energy of this compound?" is a meaningless question. And when we speak of "high energy," we mean high relative to some reference point. That's precisely why most examinations of energy in chemistry focus on a change, most commonly $Delta G$, the change in Gibbs free energy. Gibbs free energy is a tool for measuring changes in internal energy (most commonly bond-breaking and bond-making) while compensating for the entropic costs of those changes and pressure-volume work done by the system.



    At standard state, the Gibbs free energy change for a reaction or transformation can describe the relative preference of the "reactants" versus the "products" via an equilibrium constant $K$.



    $$Delta G^circ = -RT ln K$$



    This is a way to measure one kind of stability, thermodynamic stability.



    Considering $ceA <=> B$, $ceA$ is thermodynamically stable relative to $ceB$ if the free energy change of this process is positive (i.e., $Delta G > 0$), and vice versa.



    Unfortunately, thermodynamics only tells half the story for a reaction. There's also the kinetic piece, which determines how fast a reaction proceeds, that is, the rate of the reaction. Rates are determined by the relative energy of a fleeting transition state, captured by $Delta G^ddagger$. For a reaction that is highly spontaneous, if the reactant is kinetically stable (that is $Delta G^ddagger$ has a large value), then reaction will still proceed very slowly. This is kinetic stability.






    share|improve this answer









    $endgroup$




















      1












      $begingroup$

      Finding minimums: a general view



      When minimizing energy you are searching (using numerical methods) for the minimum of Energy). You are at the minimum when the derivative(Jacobian) is equal to zero. However, there are a couple unstable places that also have a derivative of zero, namely saddle points and maximums (top of a circle). We are after the minimum (bottom of a circle).



      Think of a pendulum. It has two spots where the derivative is zero... when it is all the way up, and all the way down, but only when it is in the all the way down position is it stable. When the Hessian (second derivative) is positive definite, you are at the "bottom of the pendulum swing" and at a minimum. Pendulum up the derivative is zero, but this is a maximum.



      There is also the problem that often in energy landscapes it looks like a rollercoaster...



      By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=6870865



      We need to find not just the a minimum that has a derivative of zero,but the lowest of all minimums present. This is a real tough problem since numerical solvers stop once the derivative is zero. They don't know there are other minimums. There are methods to try to get around this, but it is a very active area of research and a huge prize awaits whoever can guarantee a global minimum is found.



      A thought on energy



      What is this energy we are minimizing? We are minimizing the energy compared to a reference point. Everything is always with respect to a reference point.



      I am not a chemist, and I don't know much Quantum mechanics but I will try to give a chemistry answer...This is my impression of what is done in the scenario you are asking about. I perform minimizations on Free Energy, but that is related but not quite what you are after. In Quantum mechanics the reference point is when all nuclei and valence electrons are infinitely apart. Another common reference point in chemistry, physics and engineering is the ideal gas, which is when all molecules are infinitely apart from each other but atoms (and electrons) are still bonded to each other.



      Given a reference point which we define to have "zero" energy, for each conformer we would calculate the energy to form all of the covalent bonds in the molecule, which is to say, calculate the energy to pull the valence electrons and nuclei in from infinitely far apart and put them in the exact geometry you want. Do this for many geometries. The one that took the lowest energy to form will be the stablest of the ones you tried (There may be others you did not try though! you may be in the wrong loop of the rollercoaster still). It takes different amounts of work to put two nuclei different distances apart etc. In practice, QM programs do all of this for us, and they are getting quite fast but it can still take a very long time. It is a hard thing to calculate.






      share|improve this answer











      $endgroup$












      • $begingroup$
        Could you label the axes? What are you plotting?
        $endgroup$
        – M. Farooq
        7 mins ago










      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "431"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      H.M is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111005%2fdefine-actually-define-the-stability-and-energy-of-a-compound%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      As a chemist, I would agree that textbooks are not clear about the term stability and energy. It is not your fault and undergraduate organic chemistry books make the situation worse. I cannot recall the text, it was an old book, however it clearly said that stability of a compound does not mean anything. We should always ask, stability with respect to what? Are we talking about thermodynamic stability or kinetic stability? For example H2+O2 mixture is not stable. This statement is meaningless because we are not saying stability with respect to what? This mixture should form water right away but people actually waited for 30 years and did not find much water in a mixture of H2 and O2. Kinetically this mixture is not stable and it will react violently once you provide the right activation energy. When you are reading about stability, ask this question yourself.



      In the same vein, the term energy should also be clarified by authors. As a crude analogy is that you can think of energy as the potential energy of the whole molecule when the authors talk about conformers. Have a overall picture of the molecule. Imagine two springs, A) one which is less stretched and the other one (B) is more stretched. You can say spring B has more (potential) energy than (A). An eclipsed conformer has higher potential energy (overall, no need to think locally) than a staggered one.






      share|improve this answer









      $endgroup$

















        2












        $begingroup$

        As a chemist, I would agree that textbooks are not clear about the term stability and energy. It is not your fault and undergraduate organic chemistry books make the situation worse. I cannot recall the text, it was an old book, however it clearly said that stability of a compound does not mean anything. We should always ask, stability with respect to what? Are we talking about thermodynamic stability or kinetic stability? For example H2+O2 mixture is not stable. This statement is meaningless because we are not saying stability with respect to what? This mixture should form water right away but people actually waited for 30 years and did not find much water in a mixture of H2 and O2. Kinetically this mixture is not stable and it will react violently once you provide the right activation energy. When you are reading about stability, ask this question yourself.



        In the same vein, the term energy should also be clarified by authors. As a crude analogy is that you can think of energy as the potential energy of the whole molecule when the authors talk about conformers. Have a overall picture of the molecule. Imagine two springs, A) one which is less stretched and the other one (B) is more stretched. You can say spring B has more (potential) energy than (A). An eclipsed conformer has higher potential energy (overall, no need to think locally) than a staggered one.






        share|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          As a chemist, I would agree that textbooks are not clear about the term stability and energy. It is not your fault and undergraduate organic chemistry books make the situation worse. I cannot recall the text, it was an old book, however it clearly said that stability of a compound does not mean anything. We should always ask, stability with respect to what? Are we talking about thermodynamic stability or kinetic stability? For example H2+O2 mixture is not stable. This statement is meaningless because we are not saying stability with respect to what? This mixture should form water right away but people actually waited for 30 years and did not find much water in a mixture of H2 and O2. Kinetically this mixture is not stable and it will react violently once you provide the right activation energy. When you are reading about stability, ask this question yourself.



          In the same vein, the term energy should also be clarified by authors. As a crude analogy is that you can think of energy as the potential energy of the whole molecule when the authors talk about conformers. Have a overall picture of the molecule. Imagine two springs, A) one which is less stretched and the other one (B) is more stretched. You can say spring B has more (potential) energy than (A). An eclipsed conformer has higher potential energy (overall, no need to think locally) than a staggered one.






          share|improve this answer









          $endgroup$



          As a chemist, I would agree that textbooks are not clear about the term stability and energy. It is not your fault and undergraduate organic chemistry books make the situation worse. I cannot recall the text, it was an old book, however it clearly said that stability of a compound does not mean anything. We should always ask, stability with respect to what? Are we talking about thermodynamic stability or kinetic stability? For example H2+O2 mixture is not stable. This statement is meaningless because we are not saying stability with respect to what? This mixture should form water right away but people actually waited for 30 years and did not find much water in a mixture of H2 and O2. Kinetically this mixture is not stable and it will react violently once you provide the right activation energy. When you are reading about stability, ask this question yourself.



          In the same vein, the term energy should also be clarified by authors. As a crude analogy is that you can think of energy as the potential energy of the whole molecule when the authors talk about conformers. Have a overall picture of the molecule. Imagine two springs, A) one which is less stretched and the other one (B) is more stretched. You can say spring B has more (potential) energy than (A). An eclipsed conformer has higher potential energy (overall, no need to think locally) than a staggered one.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          M. FarooqM. Farooq

          83819




          83819





















              2












              $begingroup$

              The answer is complicated because there are different kinds of stability and when we talk about energy, we also can mean different kinds of energy.



              When we speak of energy, we generally refer to a free energy. Your normal laboratory setup is an open-air, constant-pressure system, so we use Gibbs free energy. If you were working with bomb calorimeters, you'd want to use Helmholtz free energy for constant-volume processes.



              Note importantly, that energies are relative. "What is the energy of this compound?" is a meaningless question. And when we speak of "high energy," we mean high relative to some reference point. That's precisely why most examinations of energy in chemistry focus on a change, most commonly $Delta G$, the change in Gibbs free energy. Gibbs free energy is a tool for measuring changes in internal energy (most commonly bond-breaking and bond-making) while compensating for the entropic costs of those changes and pressure-volume work done by the system.



              At standard state, the Gibbs free energy change for a reaction or transformation can describe the relative preference of the "reactants" versus the "products" via an equilibrium constant $K$.



              $$Delta G^circ = -RT ln K$$



              This is a way to measure one kind of stability, thermodynamic stability.



              Considering $ceA <=> B$, $ceA$ is thermodynamically stable relative to $ceB$ if the free energy change of this process is positive (i.e., $Delta G > 0$), and vice versa.



              Unfortunately, thermodynamics only tells half the story for a reaction. There's also the kinetic piece, which determines how fast a reaction proceeds, that is, the rate of the reaction. Rates are determined by the relative energy of a fleeting transition state, captured by $Delta G^ddagger$. For a reaction that is highly spontaneous, if the reactant is kinetically stable (that is $Delta G^ddagger$ has a large value), then reaction will still proceed very slowly. This is kinetic stability.






              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                The answer is complicated because there are different kinds of stability and when we talk about energy, we also can mean different kinds of energy.



                When we speak of energy, we generally refer to a free energy. Your normal laboratory setup is an open-air, constant-pressure system, so we use Gibbs free energy. If you were working with bomb calorimeters, you'd want to use Helmholtz free energy for constant-volume processes.



                Note importantly, that energies are relative. "What is the energy of this compound?" is a meaningless question. And when we speak of "high energy," we mean high relative to some reference point. That's precisely why most examinations of energy in chemistry focus on a change, most commonly $Delta G$, the change in Gibbs free energy. Gibbs free energy is a tool for measuring changes in internal energy (most commonly bond-breaking and bond-making) while compensating for the entropic costs of those changes and pressure-volume work done by the system.



                At standard state, the Gibbs free energy change for a reaction or transformation can describe the relative preference of the "reactants" versus the "products" via an equilibrium constant $K$.



                $$Delta G^circ = -RT ln K$$



                This is a way to measure one kind of stability, thermodynamic stability.



                Considering $ceA <=> B$, $ceA$ is thermodynamically stable relative to $ceB$ if the free energy change of this process is positive (i.e., $Delta G > 0$), and vice versa.



                Unfortunately, thermodynamics only tells half the story for a reaction. There's also the kinetic piece, which determines how fast a reaction proceeds, that is, the rate of the reaction. Rates are determined by the relative energy of a fleeting transition state, captured by $Delta G^ddagger$. For a reaction that is highly spontaneous, if the reactant is kinetically stable (that is $Delta G^ddagger$ has a large value), then reaction will still proceed very slowly. This is kinetic stability.






                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  The answer is complicated because there are different kinds of stability and when we talk about energy, we also can mean different kinds of energy.



                  When we speak of energy, we generally refer to a free energy. Your normal laboratory setup is an open-air, constant-pressure system, so we use Gibbs free energy. If you were working with bomb calorimeters, you'd want to use Helmholtz free energy for constant-volume processes.



                  Note importantly, that energies are relative. "What is the energy of this compound?" is a meaningless question. And when we speak of "high energy," we mean high relative to some reference point. That's precisely why most examinations of energy in chemistry focus on a change, most commonly $Delta G$, the change in Gibbs free energy. Gibbs free energy is a tool for measuring changes in internal energy (most commonly bond-breaking and bond-making) while compensating for the entropic costs of those changes and pressure-volume work done by the system.



                  At standard state, the Gibbs free energy change for a reaction or transformation can describe the relative preference of the "reactants" versus the "products" via an equilibrium constant $K$.



                  $$Delta G^circ = -RT ln K$$



                  This is a way to measure one kind of stability, thermodynamic stability.



                  Considering $ceA <=> B$, $ceA$ is thermodynamically stable relative to $ceB$ if the free energy change of this process is positive (i.e., $Delta G > 0$), and vice versa.



                  Unfortunately, thermodynamics only tells half the story for a reaction. There's also the kinetic piece, which determines how fast a reaction proceeds, that is, the rate of the reaction. Rates are determined by the relative energy of a fleeting transition state, captured by $Delta G^ddagger$. For a reaction that is highly spontaneous, if the reactant is kinetically stable (that is $Delta G^ddagger$ has a large value), then reaction will still proceed very slowly. This is kinetic stability.






                  share|improve this answer









                  $endgroup$



                  The answer is complicated because there are different kinds of stability and when we talk about energy, we also can mean different kinds of energy.



                  When we speak of energy, we generally refer to a free energy. Your normal laboratory setup is an open-air, constant-pressure system, so we use Gibbs free energy. If you were working with bomb calorimeters, you'd want to use Helmholtz free energy for constant-volume processes.



                  Note importantly, that energies are relative. "What is the energy of this compound?" is a meaningless question. And when we speak of "high energy," we mean high relative to some reference point. That's precisely why most examinations of energy in chemistry focus on a change, most commonly $Delta G$, the change in Gibbs free energy. Gibbs free energy is a tool for measuring changes in internal energy (most commonly bond-breaking and bond-making) while compensating for the entropic costs of those changes and pressure-volume work done by the system.



                  At standard state, the Gibbs free energy change for a reaction or transformation can describe the relative preference of the "reactants" versus the "products" via an equilibrium constant $K$.



                  $$Delta G^circ = -RT ln K$$



                  This is a way to measure one kind of stability, thermodynamic stability.



                  Considering $ceA <=> B$, $ceA$ is thermodynamically stable relative to $ceB$ if the free energy change of this process is positive (i.e., $Delta G > 0$), and vice versa.



                  Unfortunately, thermodynamics only tells half the story for a reaction. There's also the kinetic piece, which determines how fast a reaction proceeds, that is, the rate of the reaction. Rates are determined by the relative energy of a fleeting transition state, captured by $Delta G^ddagger$. For a reaction that is highly spontaneous, if the reactant is kinetically stable (that is $Delta G^ddagger$ has a large value), then reaction will still proceed very slowly. This is kinetic stability.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  ZheZhe

                  12.9k12550




                  12.9k12550





















                      1












                      $begingroup$

                      Finding minimums: a general view



                      When minimizing energy you are searching (using numerical methods) for the minimum of Energy). You are at the minimum when the derivative(Jacobian) is equal to zero. However, there are a couple unstable places that also have a derivative of zero, namely saddle points and maximums (top of a circle). We are after the minimum (bottom of a circle).



                      Think of a pendulum. It has two spots where the derivative is zero... when it is all the way up, and all the way down, but only when it is in the all the way down position is it stable. When the Hessian (second derivative) is positive definite, you are at the "bottom of the pendulum swing" and at a minimum. Pendulum up the derivative is zero, but this is a maximum.



                      There is also the problem that often in energy landscapes it looks like a rollercoaster...



                      By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=6870865



                      We need to find not just the a minimum that has a derivative of zero,but the lowest of all minimums present. This is a real tough problem since numerical solvers stop once the derivative is zero. They don't know there are other minimums. There are methods to try to get around this, but it is a very active area of research and a huge prize awaits whoever can guarantee a global minimum is found.



                      A thought on energy



                      What is this energy we are minimizing? We are minimizing the energy compared to a reference point. Everything is always with respect to a reference point.



                      I am not a chemist, and I don't know much Quantum mechanics but I will try to give a chemistry answer...This is my impression of what is done in the scenario you are asking about. I perform minimizations on Free Energy, but that is related but not quite what you are after. In Quantum mechanics the reference point is when all nuclei and valence electrons are infinitely apart. Another common reference point in chemistry, physics and engineering is the ideal gas, which is when all molecules are infinitely apart from each other but atoms (and electrons) are still bonded to each other.



                      Given a reference point which we define to have "zero" energy, for each conformer we would calculate the energy to form all of the covalent bonds in the molecule, which is to say, calculate the energy to pull the valence electrons and nuclei in from infinitely far apart and put them in the exact geometry you want. Do this for many geometries. The one that took the lowest energy to form will be the stablest of the ones you tried (There may be others you did not try though! you may be in the wrong loop of the rollercoaster still). It takes different amounts of work to put two nuclei different distances apart etc. In practice, QM programs do all of this for us, and they are getting quite fast but it can still take a very long time. It is a hard thing to calculate.






                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        Could you label the axes? What are you plotting?
                        $endgroup$
                        – M. Farooq
                        7 mins ago















                      1












                      $begingroup$

                      Finding minimums: a general view



                      When minimizing energy you are searching (using numerical methods) for the minimum of Energy). You are at the minimum when the derivative(Jacobian) is equal to zero. However, there are a couple unstable places that also have a derivative of zero, namely saddle points and maximums (top of a circle). We are after the minimum (bottom of a circle).



                      Think of a pendulum. It has two spots where the derivative is zero... when it is all the way up, and all the way down, but only when it is in the all the way down position is it stable. When the Hessian (second derivative) is positive definite, you are at the "bottom of the pendulum swing" and at a minimum. Pendulum up the derivative is zero, but this is a maximum.



                      There is also the problem that often in energy landscapes it looks like a rollercoaster...



                      By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=6870865



                      We need to find not just the a minimum that has a derivative of zero,but the lowest of all minimums present. This is a real tough problem since numerical solvers stop once the derivative is zero. They don't know there are other minimums. There are methods to try to get around this, but it is a very active area of research and a huge prize awaits whoever can guarantee a global minimum is found.



                      A thought on energy



                      What is this energy we are minimizing? We are minimizing the energy compared to a reference point. Everything is always with respect to a reference point.



                      I am not a chemist, and I don't know much Quantum mechanics but I will try to give a chemistry answer...This is my impression of what is done in the scenario you are asking about. I perform minimizations on Free Energy, but that is related but not quite what you are after. In Quantum mechanics the reference point is when all nuclei and valence electrons are infinitely apart. Another common reference point in chemistry, physics and engineering is the ideal gas, which is when all molecules are infinitely apart from each other but atoms (and electrons) are still bonded to each other.



                      Given a reference point which we define to have "zero" energy, for each conformer we would calculate the energy to form all of the covalent bonds in the molecule, which is to say, calculate the energy to pull the valence electrons and nuclei in from infinitely far apart and put them in the exact geometry you want. Do this for many geometries. The one that took the lowest energy to form will be the stablest of the ones you tried (There may be others you did not try though! you may be in the wrong loop of the rollercoaster still). It takes different amounts of work to put two nuclei different distances apart etc. In practice, QM programs do all of this for us, and they are getting quite fast but it can still take a very long time. It is a hard thing to calculate.






                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        Could you label the axes? What are you plotting?
                        $endgroup$
                        – M. Farooq
                        7 mins ago













                      1












                      1








                      1





                      $begingroup$

                      Finding minimums: a general view



                      When minimizing energy you are searching (using numerical methods) for the minimum of Energy). You are at the minimum when the derivative(Jacobian) is equal to zero. However, there are a couple unstable places that also have a derivative of zero, namely saddle points and maximums (top of a circle). We are after the minimum (bottom of a circle).



                      Think of a pendulum. It has two spots where the derivative is zero... when it is all the way up, and all the way down, but only when it is in the all the way down position is it stable. When the Hessian (second derivative) is positive definite, you are at the "bottom of the pendulum swing" and at a minimum. Pendulum up the derivative is zero, but this is a maximum.



                      There is also the problem that often in energy landscapes it looks like a rollercoaster...



                      By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=6870865



                      We need to find not just the a minimum that has a derivative of zero,but the lowest of all minimums present. This is a real tough problem since numerical solvers stop once the derivative is zero. They don't know there are other minimums. There are methods to try to get around this, but it is a very active area of research and a huge prize awaits whoever can guarantee a global minimum is found.



                      A thought on energy



                      What is this energy we are minimizing? We are minimizing the energy compared to a reference point. Everything is always with respect to a reference point.



                      I am not a chemist, and I don't know much Quantum mechanics but I will try to give a chemistry answer...This is my impression of what is done in the scenario you are asking about. I perform minimizations on Free Energy, but that is related but not quite what you are after. In Quantum mechanics the reference point is when all nuclei and valence electrons are infinitely apart. Another common reference point in chemistry, physics and engineering is the ideal gas, which is when all molecules are infinitely apart from each other but atoms (and electrons) are still bonded to each other.



                      Given a reference point which we define to have "zero" energy, for each conformer we would calculate the energy to form all of the covalent bonds in the molecule, which is to say, calculate the energy to pull the valence electrons and nuclei in from infinitely far apart and put them in the exact geometry you want. Do this for many geometries. The one that took the lowest energy to form will be the stablest of the ones you tried (There may be others you did not try though! you may be in the wrong loop of the rollercoaster still). It takes different amounts of work to put two nuclei different distances apart etc. In practice, QM programs do all of this for us, and they are getting quite fast but it can still take a very long time. It is a hard thing to calculate.






                      share|improve this answer











                      $endgroup$



                      Finding minimums: a general view



                      When minimizing energy you are searching (using numerical methods) for the minimum of Energy). You are at the minimum when the derivative(Jacobian) is equal to zero. However, there are a couple unstable places that also have a derivative of zero, namely saddle points and maximums (top of a circle). We are after the minimum (bottom of a circle).



                      Think of a pendulum. It has two spots where the derivative is zero... when it is all the way up, and all the way down, but only when it is in the all the way down position is it stable. When the Hessian (second derivative) is positive definite, you are at the "bottom of the pendulum swing" and at a minimum. Pendulum up the derivative is zero, but this is a maximum.



                      There is also the problem that often in energy landscapes it looks like a rollercoaster...



                      By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=6870865



                      We need to find not just the a minimum that has a derivative of zero,but the lowest of all minimums present. This is a real tough problem since numerical solvers stop once the derivative is zero. They don't know there are other minimums. There are methods to try to get around this, but it is a very active area of research and a huge prize awaits whoever can guarantee a global minimum is found.



                      A thought on energy



                      What is this energy we are minimizing? We are minimizing the energy compared to a reference point. Everything is always with respect to a reference point.



                      I am not a chemist, and I don't know much Quantum mechanics but I will try to give a chemistry answer...This is my impression of what is done in the scenario you are asking about. I perform minimizations on Free Energy, but that is related but not quite what you are after. In Quantum mechanics the reference point is when all nuclei and valence electrons are infinitely apart. Another common reference point in chemistry, physics and engineering is the ideal gas, which is when all molecules are infinitely apart from each other but atoms (and electrons) are still bonded to each other.



                      Given a reference point which we define to have "zero" energy, for each conformer we would calculate the energy to form all of the covalent bonds in the molecule, which is to say, calculate the energy to pull the valence electrons and nuclei in from infinitely far apart and put them in the exact geometry you want. Do this for many geometries. The one that took the lowest energy to form will be the stablest of the ones you tried (There may be others you did not try though! you may be in the wrong loop of the rollercoaster still). It takes different amounts of work to put two nuclei different distances apart etc. In practice, QM programs do all of this for us, and they are getting quite fast but it can still take a very long time. It is a hard thing to calculate.







                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 35 mins ago

























                      answered 58 mins ago









                      Charlie CrownCharlie Crown

                      607217




                      607217











                      • $begingroup$
                        Could you label the axes? What are you plotting?
                        $endgroup$
                        – M. Farooq
                        7 mins ago
















                      • $begingroup$
                        Could you label the axes? What are you plotting?
                        $endgroup$
                        – M. Farooq
                        7 mins ago















                      $begingroup$
                      Could you label the axes? What are you plotting?
                      $endgroup$
                      – M. Farooq
                      7 mins ago




                      $begingroup$
                      Could you label the axes? What are you plotting?
                      $endgroup$
                      – M. Farooq
                      7 mins ago










                      H.M is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      H.M is a new contributor. Be nice, and check out our Code of Conduct.












                      H.M is a new contributor. Be nice, and check out our Code of Conduct.











                      H.M is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111005%2fdefine-actually-define-the-stability-and-energy-of-a-compound%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                      Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                      Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org