Schwarzchild Radius of the UniverseIs the “far” universe expanding more quickly?Does the math work out for there being enough time for the formation of the heavier elements and their distribution as seen in today's universe?How is the universe expanding?What would happen in the final days of the universe?How much of the universe is observable at visible wavelengths?What's the point of looking at distances beyond $13,7$ billion light years?How long was the universe radiation dominated?physical meaning of dark matter virial radiusWhat happens in the event that the cooling radius is shorter than the virial radius of a Cold Dark Matter Halo?The Cosmic Microwave Background Paradox

What typically incentivizes a professor to change jobs to a lower ranking university?

Set-theoretical foundations of Mathematics with only bounded quantifiers

Why is this code 6.5x slower with optimizations enabled?

Can I interfere when another PC is about to be attacked?

How can bays and straits be determined in a procedurally generated map?

What makes Graph invariants so useful/important?

Should I join office cleaning event for free?

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

Validation accuracy vs Testing accuracy

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

If Manufacturer spice model and Datasheet give different values which should I use?

Japan - Plan around max visa duration

"You are your self first supporter", a more proper way to say it

Can I make popcorn with any corn?

Shell script can be run only with sh command

Why is "Reports" in sentence down without "The"

How is it possible to have an ability score that is less than 3?

I probably found a bug with the sudo apt install function

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

What do you call a Matrix-like slowdown and camera movement effect?

How old can references or sources in a thesis be?

TGV timetables / schedules?

Is Social Media Science Fiction?

Simulate Bitwise Cyclic Tag



Schwarzchild Radius of the Universe


Is the “far” universe expanding more quickly?Does the math work out for there being enough time for the formation of the heavier elements and their distribution as seen in today's universe?How is the universe expanding?What would happen in the final days of the universe?How much of the universe is observable at visible wavelengths?What's the point of looking at distances beyond $13,7$ billion light years?How long was the universe radiation dominated?physical meaning of dark matter virial radiusWhat happens in the event that the cooling radius is shorter than the virial radius of a Cold Dark Matter Halo?The Cosmic Microwave Background Paradox













1












$begingroup$


According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
https://en.wikipedia.org/wiki/Schwarzschild_radius
(The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])



The reference for this statement is:



https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances



Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
    https://en.wikipedia.org/wiki/Schwarzschild_radius
    (The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])



    The reference for this statement is:



    https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances



    Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
      https://en.wikipedia.org/wiki/Schwarzschild_radius
      (The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])



      The reference for this statement is:



      https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances



      Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?










      share|cite|improve this question











      $endgroup$




      According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
      https://en.wikipedia.org/wiki/Schwarzschild_radius
      (The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])



      The reference for this statement is:



      https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances



      Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?







      astronomy






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago







      Rick

















      asked 6 hours ago









      RickRick

      620315




      620315




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.



          Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.



          This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.



          The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
            $endgroup$
            – Paul Young
            4 hours ago











          • $begingroup$
            It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
            $endgroup$
            – Rick
            1 hour ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471160%2fschwarzchild-radius-of-the-universe%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.



          Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.



          This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.



          The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
            $endgroup$
            – Paul Young
            4 hours ago











          • $begingroup$
            It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
            $endgroup$
            – Rick
            1 hour ago















          5












          $begingroup$

          In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.



          Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.



          This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.



          The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
            $endgroup$
            – Paul Young
            4 hours ago











          • $begingroup$
            It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
            $endgroup$
            – Rick
            1 hour ago













          5












          5








          5





          $begingroup$

          In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.



          Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.



          This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.



          The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.






          share|cite|improve this answer









          $endgroup$



          In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.



          Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.



          This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.



          The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          probably_someoneprobably_someone

          18.8k12960




          18.8k12960











          • $begingroup$
            probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
            $endgroup$
            – Paul Young
            4 hours ago











          • $begingroup$
            It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
            $endgroup$
            – Rick
            1 hour ago
















          • $begingroup$
            probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
            $endgroup$
            – Paul Young
            4 hours ago











          • $begingroup$
            It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
            $endgroup$
            – Rick
            1 hour ago















          $begingroup$
          probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
          $endgroup$
          – Paul Young
          4 hours ago





          $begingroup$
          probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
          $endgroup$
          – Paul Young
          4 hours ago













          $begingroup$
          It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
          $endgroup$
          – Rick
          1 hour ago




          $begingroup$
          It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
          $endgroup$
          – Rick
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471160%2fschwarzchild-radius-of-the-universe%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

          Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

          Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org