Closed subgroups of abelian groupsEmbedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups

How old can references or sources in a thesis be?

Is there a minimum number of transactions in a block?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

Why is "Reports" in sentence down without "The"

What Brexit solution does the DUP want?

Can I make popcorn with any corn?

Is there a familial term for apples and pears?

"which" command doesn't work / path of Safari?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

A function which translates a sentence to title-case

DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?

N.B. ligature in Latex

Download, install and reboot computer at night if needed

Why Is Death Allowed In the Matrix?

What defenses are there against being summoned by the Gate spell?

What would happen to a modern skyscraper if it rains micro blackholes?

Why don't electron-positron collisions release infinite energy?

Why CLRS example on residual networks does not follows its formula?

What typically incentivizes a professor to change jobs to a lower ranking university?

Is it possible to do 50 km distance without any previous training?

How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?

Simulate Bitwise Cyclic Tag

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Japan - Any leeway for max visa duration due to unforeseen circumstances?



Closed subgroups of abelian groups


Embedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups













2












$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago
















2












$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago














2












2








2





$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$




What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?







general-topology differential-geometry lie-groups lie-algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Clayton

19.6k33288




19.6k33288










asked 4 hours ago









Amrat AAmrat A

340111




340111







  • 1




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago













  • 1




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago








1




1




$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
2 hours ago





$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
2 hours ago











2 Answers
2






active

oldest

votes


















1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    3 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago


















3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    3 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago















1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    3 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago













1












1








1





$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$



EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 3 hours ago









Alex YoucisAlex Youcis

36k775115




36k775115











  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    3 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago
















  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    3 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago















$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
3 hours ago





$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
3 hours ago













$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
3 hours ago












$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
3 hours ago




$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
3 hours ago




1




1




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
3 hours ago




1




1




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
3 hours ago











3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago















3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago













3












3








3





$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$



Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 1 hour ago









RandallRandall

10.7k11431




10.7k11431







  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago












  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago







2




2




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
1 hour ago




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
1 hour ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»