Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = y in mathbb R$ The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic

What force causes entropy to increase?

Is every episode of "Where are my Pants?" identical?

Do I have Disadvantage attacking with an off-hand weapon?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

should truth entail possible truth

What is the role of 'For' here?

Why did Peik Lin say, "I'm not an animal"?

How to support a colleague who finds meetings extremely tiring?

Presidential Pardon

Can we generate random numbers using irrational numbers like π and e?

Make it rain characters

Visa regaring travelling European country

60's-70's movie: home appliances revolting against the owners

Loose spokes after only a few rides

One-dimensional Japanese puzzle

Is an up-to-date browser secure on an out-of-date OS?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

Deal with toxic manager when you can't quit

Circular reasoning in L'Hopital's rule

Single author papers against my advisor's will?

What can I do if neighbor is blocking my solar panels intentionally?

Drawing arrows from one table cell reference to another

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Would an alien lifeform be able to achieve space travel if lacking in vision?



Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = y in mathbb R$



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic










1












$begingroup$


So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










      share|cite|improve this question











      $endgroup$




      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?







      abstract-algebra group-isomorphism






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 mins ago









      YuiTo Cheng

      2,4064937




      2,4064937










      asked 1 hour ago









      UfomammutUfomammut

      391314




      391314




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
            If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
            Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
            The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
            Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
              $endgroup$
              – Ufomammut
              48 mins ago











            • $begingroup$
              Yes, that will also work.
              $endgroup$
              – Mayank Mishra
              45 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






                share|cite|improve this answer









                $endgroup$



                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 56 mins ago









                lEmlEm

                3,4621921




                3,4621921





















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      48 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      45 mins ago















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      48 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      45 mins ago













                    2












                    2








                    2





                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$



                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 30 mins ago

























                    answered 50 mins ago









                    Mayank MishraMayank Mishra

                    1068




                    1068











                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      48 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      45 mins ago
















                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      48 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      45 mins ago















                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    48 mins ago





                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    48 mins ago













                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    45 mins ago




                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    45 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                    Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                    Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»