Chernik Referencias Menú de navegación43°48′29″N 27°07′00″E / 43.808055555556, 27.11666666666743°48′29″N 27°07′00″E / 43.808055555556, 27.116666666667Преброяване на населението, 01.02.2011, НСИMapa de Chernik

Localidades de la provincia de SilistraMunicipio de Dulovo


búlgaropuebloBulgariamunicipio de Dulovoprovincia de SilistraDulovoturcosDulovoRuse


























Chernik
Черник

Pueblo



Chernik ubicada en Bulgaria

Chernik

Chernik





Localización de Chernik en Bulgaria

Coordenadas
43°48′29″N 27°07′00″E / 43.808055555556, 27.116666666667Coordenadas: 43°48′29″N 27°07′00″E / 43.808055555556, 27.116666666667
Entidad
Pueblo
 • País

Bandera de Bulgaria Bulgaria
 • Provincia

Silistra
 • Municipio

Dulovo
Altitud
 
 • Media
232 m s. n. m.

Población (15 de marzo de 2015)

 
 • Total
2520 hab.
Huso horario
UTC+02:00 y UTC+03:00
Código postal
7651

Chernik (búlgaro: Черник) es un pueblo de Bulgaria perteneciente al municipio de Dulovo de la provincia de Silistra.


Con 2343 habitantes en 2011, es la segunda localidad más importante del municipio tras la capital municipal Dulovo.[1]


La localidad está habitada principalmente por turcos de origen qizilbash. El principal monumento de la localidad es una türbe construida en 1994.[2]​ La fiesta local del pueblo es el 6 de mayo.


Se ubica en la periferia occidental de la capital municipal Dulovo, en la salida de dicha ciudad por la carretera 23 que lleva a Ruse.[3]



Referencias



  1. Преброяване на населението, 01.02.2011, НСИ


  2. Миков, Любомир (2007). Култова архитектура и изкуство на хетеродоксните мюсюлмани в България (XVI-XX век). София: Академично издателство „Проф. Марин Дринов“. pp. 118-120. ISBN 978-954-322-197-4. 


  3. Mapa de Chernik







Popular posts from this blog

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Eliminatorias de Conmebol para la Copa Mundial de Fútbol de 2006 Índice Tabla de posiciones final Partidos Goleadores Repesca Intercontinental Clasificados Véase también Referencias Enlaces externos Menú de navegación2:0 (1:0)2:2 (2:0)4:1 (2:1)5:0 (2:0)1:2 (1:1)0:3 (0:3)2:1 (1:0)4:0 (2:0)4:1 (1:1)1:0 (1:0)2:1 (1:1)0:1 (0:1)2:1 (1:0)3:0 (0:0)1:1 (0:1)2:1 (0:0)0:1 (0:1)0:01:1 (0:1)3:3 (2:0)0:2 (0:1)1:0 (0:0)0:3 (0:1)0:00:2 (0:2)2:1 (1:1)0:1 (0:0)1:3 (0:2)2:1 (1:0)3:1 (1:0)3:2 (3:0)0:00:05:0 (3:0)1:1 (0:1)1:3 (0:1)1:0 (0:0)3:1 (3:0)1:0 (0:0)0:04:2 (3:0)1:0 (0:0)1:1 (1:0)2:5 (0:2)2:0 (0:0)0:01:1 (1:0)0:00:03:1 (1:1)3:2 (2:1)1:0 (1:0)2:1 (0:0)1:0 (0:0)1:0 (0:0)0:01:1 (0:1)1:2 (0:0)5:2 (2:2)1:0 (0:0)3:1 (2:0)2:1 (1:0)1:0 (0:0)2:2 (1:2)1:1 (0:0)3:1 (2:0)2:0 (0:0)1:1 (0:1)5:0 (1:0)4:1 (2:0)0:03:0 (2:0)2:1 (1:0)3:1 (3:0)4:1 (2:1)1:0 (1:0)4:1 (1:0)1:2 (1:1)5:0 (4:0)3:2 (1:0)0:00:1 (0:0)1:1 (1:0)1:1 (0:1)2:0 (0:0)1:0 (0:0)0:1 (0:1)0:03:0 (1:0)4:1 (3:0)ReporteReporteGoleadores de las Eliminatorias Sudamericanas 2006.Eliminatorias Sudamericanas 2006 - FIFAEliminatorias Sudamericanas 2006 - RSSSF

Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal