Minimizing with differential evolutionMinimizing a function of many coordinatesMinimizing a function with some restrictionsMinimizing Multiple FunctionsProblem in minimizing expressionSolving 4 coupled differential equation and minimizing the solutionProblem when minimizing user-defined function in Mathematica with Minimize[]Minimizing with constraintsMinimizing functions with parametersMinimizing a conditional function with parametersMinimizing a function problem

Are all players supposed to be able to see each others' character sheets?

Why is there an extra space when I type "ls" in the Desktop directory?

Doesn't allowing a user mode program to access kernel space memory and execute the IN and OUT instructions defeat the purpose of having CPU modes?

How can I get players to focus on the story aspect of D&D?

In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?

Virginia employer terminated employee and wants signing bonus returned

Can't make sense of a paragraph from Lovecraft

Signed and unsigned numbers

What will happen if my luggage gets delayed?

Confusion about Complex Continued Fraction

Why does cron require MTA for logging?

Why couldn't the separatists legally leave the Republic?

Proving a statement about real numbers

What can I do if someone tampers with my SSH public key?

Is it possible to avoid unpacking when merging Association?

How to resolve: Reviewer #1 says remove section X vs. Reviewer #2 says expand section X

What is Tony Stark injecting into himself in Iron Man 3?

What do *foreign films* mean for an American?

How can I manipulate the output of Information?

What problems would a superhuman have who's skin is constantly hot?

Recommendation letter by significant other if you worked with them professionally?

For which categories of spectra is there an explicit description of the fibrant objects via lifting properties?

Has a sovereign Communist government ever run, and conceded loss, on a fair election?

After `ssh` without `-X` to a machine, is it possible to change `$DISPLAY` to make it work like `ssh -X`?



Minimizing with differential evolution


Minimizing a function of many coordinatesMinimizing a function with some restrictionsMinimizing Multiple FunctionsProblem in minimizing expressionSolving 4 coupled differential equation and minimizing the solutionProblem when minimizing user-defined function in Mathematica with Minimize[]Minimizing with constraintsMinimizing functions with parametersMinimizing a conditional function with parametersMinimizing a function problem













4












$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> 1, 1, 1];

p2 =
DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> 0, 15]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



fit, intermediates = 
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 1000,
Method -> "DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :> Sow[x, y]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
i, 10, 1000, 100]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> 1, 1, 1];

p2 = DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> -0.5, 15]

Block[f,
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
fit, intermediates =
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 30,
Method -> "DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :>
Sow[Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[Append[#, 0] & /@ intermediates[[1, i, 1]],
PlotRange -> -5, 5, -5, 5, -5, 5, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], i, 1, 30,
2], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    1 hour ago
















4












$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> 1, 1, 1];

p2 =
DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> 0, 15]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



fit, intermediates = 
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 1000,
Method -> "DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :> Sow[x, y]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
i, 10, 1000, 100]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> 1, 1, 1];

p2 = DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> -0.5, 15]

Block[f,
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
fit, intermediates =
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 30,
Method -> "DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :>
Sow[Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[Append[#, 0] & /@ intermediates[[1, i, 1]],
PlotRange -> -5, 5, -5, 5, -5, 5, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], i, 1, 30,
2], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    1 hour ago














4












4








4


2



$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> 1, 1, 1];

p2 =
DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> 0, 15]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



fit, intermediates = 
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 1000,
Method -> "DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :> Sow[x, y]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
i, 10, 1000, 100]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> 1, 1, 1];

p2 = DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> -0.5, 15]

Block[f,
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
fit, intermediates =
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 30,
Method -> "DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :>
Sow[Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[Append[#, 0] & /@ intermediates[[1, i, 1]],
PlotRange -> -5, 5, -5, 5, -5, 5, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], i, 1, 30,
2], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$




A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> 1, 1, 1];

p2 =
DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> 0, 15]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



fit, intermediates = 
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 1000,
Method -> "DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :> Sow[x, y]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
i, 10, 1000, 100]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], x, -5, 5, y, -5, 5,
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> 1, 1, 1];

p2 = DensityPlot[f[x, y], x, -5, 5, y, -5, 5,
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, x, -5, 5, y, -5, 5, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> -0.5, 15]

Block[f,
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
fit, intermediates =
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 30,
Method -> "DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :>
Sow[Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[Append[#, 0] & /@ intermediates[[1, i, 1]],
PlotRange -> -5, 5, -5, 5, -5, 5, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], i, 1, 30,
2], 5, Appearance -> "Horizontal"]


enter image description here







mathematical-optimization






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago







Okkes Dulgerci

















asked 3 hours ago









Okkes DulgerciOkkes Dulgerci

5,2691917




5,2691917











  • $begingroup$
    Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    1 hour ago

















  • $begingroup$
    Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    1 hour ago
















$begingroup$
Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
$endgroup$
– Michael E2
1 hour ago





$begingroup$
Note that blocking f (Block[f, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
$endgroup$
– Michael E2
1 hour ago











1 Answer
1






active

oldest

votes


















3












$begingroup$

Here's a way:



Block[f,
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
fit, intermediates =
Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
MaxIterations -> 30,
Method -> "DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2],
StepMonitor :>
Sow[Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals]]];
]

Manipulate[
Graphics[
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
,
PlotRange -> 5, Frame -> True],
n, 1, Length@intermediates[[1]], 1
]


enter image description here



You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






share|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Here's a way:



    Block[f,
    f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
    E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
    fit, intermediates =
    Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
    MaxIterations -> 30,
    Method -> "DifferentialEvolution",
    "InitialPoints" -> Tuples[Range[-5, 5], 2],
    StepMonitor :>
    Sow[Optimization`NMinimizeDump`vecs,
    Optimization`NMinimizeDump`vals]]];
    ]

    Manipulate[
    Graphics[
    PointSize[Medium],
    Point[intermediates[[1, n, 1]],
    VertexColors ->
    ColorData["Rainbow"] /@
    Rescale[intermediates[[1, n, 2]],
    MinMax[intermediates[[1, All, 2]]]]]
    ,
    PlotRange -> 5, Frame -> True],
    n, 1, Length@intermediates[[1]], 1
    ]


    enter image description here



    You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






    share|improve this answer









    $endgroup$

















      3












      $begingroup$

      Here's a way:



      Block[f,
      f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
      E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
      fit, intermediates =
      Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
      MaxIterations -> 30,
      Method -> "DifferentialEvolution",
      "InitialPoints" -> Tuples[Range[-5, 5], 2],
      StepMonitor :>
      Sow[Optimization`NMinimizeDump`vecs,
      Optimization`NMinimizeDump`vals]]];
      ]

      Manipulate[
      Graphics[
      PointSize[Medium],
      Point[intermediates[[1, n, 1]],
      VertexColors ->
      ColorData["Rainbow"] /@
      Rescale[intermediates[[1, n, 2]],
      MinMax[intermediates[[1, All, 2]]]]]
      ,
      PlotRange -> 5, Frame -> True],
      n, 1, Length@intermediates[[1]], 1
      ]


      enter image description here



      You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






      share|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Here's a way:



        Block[f,
        f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
        E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
        fit, intermediates =
        Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
        MaxIterations -> 30,
        Method -> "DifferentialEvolution",
        "InitialPoints" -> Tuples[Range[-5, 5], 2],
        StepMonitor :>
        Sow[Optimization`NMinimizeDump`vecs,
        Optimization`NMinimizeDump`vals]]];
        ]

        Manipulate[
        Graphics[
        PointSize[Medium],
        Point[intermediates[[1, n, 1]],
        VertexColors ->
        ColorData["Rainbow"] /@
        Rescale[intermediates[[1, n, 2]],
        MinMax[intermediates[[1, All, 2]]]]]
        ,
        PlotRange -> 5, Frame -> True],
        n, 1, Length@intermediates[[1]], 1
        ]


        enter image description here



        You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






        share|improve this answer









        $endgroup$



        Here's a way:



        Block[f,
        f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
        E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
        fit, intermediates =
        Reap[NMinimize[f[x, y], -5 <= x <= 5, -5 <= y <= 5, x, y,
        MaxIterations -> 30,
        Method -> "DifferentialEvolution",
        "InitialPoints" -> Tuples[Range[-5, 5], 2],
        StepMonitor :>
        Sow[Optimization`NMinimizeDump`vecs,
        Optimization`NMinimizeDump`vals]]];
        ]

        Manipulate[
        Graphics[
        PointSize[Medium],
        Point[intermediates[[1, n, 1]],
        VertexColors ->
        ColorData["Rainbow"] /@
        Rescale[intermediates[[1, n, 2]],
        MinMax[intermediates[[1, All, 2]]]]]
        ,
        PlotRange -> 5, Frame -> True],
        n, 1, Length@intermediates[[1]], 1
        ]


        enter image description here



        You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 hours ago









        Michael E2Michael E2

        148k12198478




        148k12198478



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

            Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

            Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org