Is Lorentz symmetry broken if SUSY is broken?Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?

What do you call someone who asks many questions?

What mechanic is there to disable a threat instead of killing it?

Did Shadowfax go to Valinor?

90's TV series where a boy goes to another dimension through portal near power lines

What is the word for reserving something for yourself before others do?

Why are electrically insulating heatsinks so rare? Is it just cost?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Why is Collection not simply treated as Collection<?>

How can saying a song's name be a copyright violation?

Theorems that impeded progress

Can one be a co-translator of a book, if he does not know the language that the book is translated into?

Why is consensus so controversial in Britain?

Is it canonical bit space?

Where does SFDX store details about scratch orgs?

Facing a paradox: Earnshaw's theorem in one dimension

What to put in ESTA if staying in US for a few days before going on to Canada

I'm flying to France today and my passport expires in less than 2 months

Do I have a twin with permutated remainders?

Why doesn't H₄O²⁺ exist?

How to prevent "they're falling in love" trope

Is it legal for company to use my work email to pretend I still work there?

Twin primes whose sum is a cube

Can a rocket refuel on Mars from water?

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?



Is Lorentz symmetry broken if SUSY is broken?


Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?













4












$begingroup$


I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



Is there something I am missing here? Is this even a bad thing?










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



    We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



    $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



    If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



    $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



    Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



    Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



    Is there something I am missing here? Is this even a bad thing?










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      2



      $begingroup$


      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?










      share|cite|improve this question









      $endgroup$




      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?







      quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      LucashWindowWasherLucashWindowWasher

      1819




      1819




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            3 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            3 hours ago















          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            3 hours ago













          3












          3








          3





          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$



          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          knzhouknzhou

          46.2k11124223




          46.2k11124223











          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            3 hours ago
















          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            3 hours ago















          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          3 hours ago




          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          3 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

          Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

          Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org