How to rewrite equation of hyperbola in standard formRewrite a west to east parabola in standard formStandard form of hyperbolaConic Section IntuitionWhat steps are involved to derive a functional expression for the revolving line of a cooling tower?Conic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formHow to prove that the limit of this sequence is $400/pi$Can you multiply an integral by f(x)/f(x) where deg(f(x))>0?

How do you make your own symbol when Detexify fails?

Why should universal income be universal?

How can "mimic phobia" be cured or prevented?

The IT department bottlenecks progress. How should I handle this?

PTIJ: Haman's bad computer

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

How could a planet have erratic days?

putting logo on same line but after title, latex

Lowest total scrabble score

What is Cash Advance APR?

Can a Canadian Travel to the USA twice, less than 180 days each time?

Yosemite Fire Rings - What to Expect?

Quoting Keynes in a lecture

Can I still be respawned if I die by falling off the map?

What are the advantages of simplicial model categories over non-simplicial ones?

Open a doc from terminal, but not by its name

Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?

Non-trope happy ending?

Terse Method to Swap Lowest for Highest?

Can a College of Swords bard use a Blade Flourish option on an opportunity attack provoked by their own Dissonant Whispers spell?

Did arcade monitors have same pixel aspect ratio as TV sets?

Why is it that I can sometimes guess the next note?

What is going on with 'gets(stdin)' on the site coderbyte?

Why does a simple loop result in ASYNC_NETWORK_IO waits?



How to rewrite equation of hyperbola in standard form


Rewrite a west to east parabola in standard formStandard form of hyperbolaConic Section IntuitionWhat steps are involved to derive a functional expression for the revolving line of a cooling tower?Conic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formHow to prove that the limit of this sequence is $400/pi$Can you multiply an integral by f(x)/f(x) where deg(f(x))>0?













2












$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    3 hours ago
















2












$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    3 hours ago














2












2








2





$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$




I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!







calculus conic-sections






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Key Flex

8,63761233




8,63761233










asked 3 hours ago









JamesJames

555




555







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    3 hours ago













  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    3 hours ago








2




2




$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
3 hours ago





$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
3 hours ago











3 Answers
3






active

oldest

votes


















4












$begingroup$

Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    3 hours ago










  • $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    2 hours ago


















2












$begingroup$

So we have $$9(x^2-8x)-4y^2=0$$



$$9(x^2-8x+colorred16-16)-4y^2=0$$



$$9(x-4)^2-144-4y^2=0$$



so $$9(x-4)^2-4y^2=144;;;;/:144$$



$$(x-4)^2over 16-y^2over 36=1$$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    3 hours ago


















1












$begingroup$

$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      3 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      2 hours ago















    4












    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      3 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      2 hours ago













    4












    4








    4





    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$



    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    Key FlexKey Flex

    8,63761233




    8,63761233











    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      3 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      2 hours ago
















    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      3 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      2 hours ago















    $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    3 hours ago




    $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    3 hours ago












    $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    2 hours ago




    $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    2 hours ago











    2












    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      3 hours ago















    2












    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      3 hours ago













    2












    2








    2





    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$



    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    Maria MazurMaria Mazur

    48k1260120




    48k1260120







    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      3 hours ago












    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      3 hours ago







    1




    1




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    3 hours ago




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    3 hours ago











    1












    $begingroup$

    $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
    $$iff frac9144(x-4)^2-frac4144y^2=1$$
    $$iff frac(x-4)^216-fracy^236=1$$
    $$iff frac(x-4)^24^2-fracy^26^2=1$$






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
      $$iff frac9144(x-4)^2-frac4144y^2=1$$
      $$iff frac(x-4)^216-fracy^236=1$$
      $$iff frac(x-4)^24^2-fracy^26^2=1$$






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
        $$iff frac9144(x-4)^2-frac4144y^2=1$$
        $$iff frac(x-4)^216-fracy^236=1$$
        $$iff frac(x-4)^24^2-fracy^26^2=1$$






        share|cite|improve this answer









        $endgroup$



        $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
        $$iff frac9144(x-4)^2-frac4144y^2=1$$
        $$iff frac(x-4)^216-fracy^236=1$$
        $$iff frac(x-4)^24^2-fracy^26^2=1$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        HAMIDINE SOUMAREHAMIDINE SOUMARE

        1,20729




        1,20729



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

            Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

            Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org