How big is a MODIS 250m pixel in reality?How to mosaic multiple MODIS images of Multiple months using MRT tool?How to reproject MODIS L2 data with lat/lonHow to remove cloudy pixel from MODIS NDVI (MOD13Q1)How can I create a polygon(filled polygon) from a single pixel stored in a hdf file(MODIS)?Issue with mapping MODIS SIN grid to EASE 2.0 with gdalwarpHow to mosaic multiple modis tiles of several dates using mrt tool?MODIS Landsat overlappingMODIS R Connection errorChange pixel size of MODIS in GEEMODIS 04_L2 projection transformation

The difference between「N分で」and「後N分で」

Why one should not leave fingerprints on bulbs and plugs?

Why is the President allowed to veto a cancellation of emergency powers?

What should tie a collection of short-stories together?

Can I use USB data pins as power source

Recruiter wants very extensive technical details about all of my previous work

My Graph Theory Students

Existence of subset with given Hausdorff dimension

What did Alexander Pope mean by "Expletives their feeble Aid do join"?

What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?

In a future war, an old lady is trying to raise a boy but one of the weapons has made everyone deaf

What is the rarity of this homebrew magic staff?

Do I need to be arrogant to get ahead?

Unexpected result from ArcLength

Welcoming 2019 Pi day: How to draw the letter π?

Property of summation

Instead of Universal Basic Income, why not Universal Basic NEEDS?

An inequality of matrix norm

(Calculus) Derivative Thinking Question

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Opacity of an object in 2.8

Min function accepting varying number of arguments in C++17

How could a scammer know the apps on my phone / iTunes account?

Do I need life insurance if I can cover my own funeral costs?



How big is a MODIS 250m pixel in reality?


How to mosaic multiple MODIS images of Multiple months using MRT tool?How to reproject MODIS L2 data with lat/lonHow to remove cloudy pixel from MODIS NDVI (MOD13Q1)How can I create a polygon(filled polygon) from a single pixel stored in a hdf file(MODIS)?Issue with mapping MODIS SIN grid to EASE 2.0 with gdalwarpHow to mosaic multiple modis tiles of several dates using mrt tool?MODIS Landsat overlappingMODIS R Connection errorChange pixel size of MODIS in GEEMODIS 04_L2 projection transformation













1















How big is a MODIS 250m pixel in reality?



This appears to be a question that contains its own answer, but I have several reasons to doubt that the pixel size is actually 250m x 250m:



  1. I downloaded MODIS 250m NDVI data from the USGS site, transformed it from Sin to Geographic (SRID 4326) using the MODIS Reprojection Tool (which has since been replaced, but at the time was the official tool).

  2. Using gdalinfo on the resulting file gives the pixel size as (0.002884053983564 X 0.002884053983564). I assume that this measurement is in decimal degrees.

  3. This online calculator gives the length of one degree of latitude at the latitude of my study area as 111,092.7 m, and of longitude as 81,540.9 m. That would make the pixel dimensions 320m in the N-S direction and 235m in the E-W direction.

  4. I've overlaid the NDVI image onto other data, and the two correspond; for example you can clearly see greener vegetation along rivers. This wouldn't happen if they were misaligned or mis-projected.

  5. I can also measure the size of a pixel using QGIS's measurement tool, and the length comes out to about 320 x 235 m, i.e., it agrees with the file metadata.

I have read the documentation and found a few suspicious references in published papers to things like "nominal" pixel size of 250 m, or pixel size of 250 m "at nadir", and this paper makes it look to me as if the physical camera/mirror apparatus would result in pixels that aren't 250m x 250m square, but the authors don't describe in detail the projection and/or transformation used to create the data products so I'm not sure.










share|improve this question




























    1















    How big is a MODIS 250m pixel in reality?



    This appears to be a question that contains its own answer, but I have several reasons to doubt that the pixel size is actually 250m x 250m:



    1. I downloaded MODIS 250m NDVI data from the USGS site, transformed it from Sin to Geographic (SRID 4326) using the MODIS Reprojection Tool (which has since been replaced, but at the time was the official tool).

    2. Using gdalinfo on the resulting file gives the pixel size as (0.002884053983564 X 0.002884053983564). I assume that this measurement is in decimal degrees.

    3. This online calculator gives the length of one degree of latitude at the latitude of my study area as 111,092.7 m, and of longitude as 81,540.9 m. That would make the pixel dimensions 320m in the N-S direction and 235m in the E-W direction.

    4. I've overlaid the NDVI image onto other data, and the two correspond; for example you can clearly see greener vegetation along rivers. This wouldn't happen if they were misaligned or mis-projected.

    5. I can also measure the size of a pixel using QGIS's measurement tool, and the length comes out to about 320 x 235 m, i.e., it agrees with the file metadata.

    I have read the documentation and found a few suspicious references in published papers to things like "nominal" pixel size of 250 m, or pixel size of 250 m "at nadir", and this paper makes it look to me as if the physical camera/mirror apparatus would result in pixels that aren't 250m x 250m square, but the authors don't describe in detail the projection and/or transformation used to create the data products so I'm not sure.










    share|improve this question


























      1












      1








      1


      1






      How big is a MODIS 250m pixel in reality?



      This appears to be a question that contains its own answer, but I have several reasons to doubt that the pixel size is actually 250m x 250m:



      1. I downloaded MODIS 250m NDVI data from the USGS site, transformed it from Sin to Geographic (SRID 4326) using the MODIS Reprojection Tool (which has since been replaced, but at the time was the official tool).

      2. Using gdalinfo on the resulting file gives the pixel size as (0.002884053983564 X 0.002884053983564). I assume that this measurement is in decimal degrees.

      3. This online calculator gives the length of one degree of latitude at the latitude of my study area as 111,092.7 m, and of longitude as 81,540.9 m. That would make the pixel dimensions 320m in the N-S direction and 235m in the E-W direction.

      4. I've overlaid the NDVI image onto other data, and the two correspond; for example you can clearly see greener vegetation along rivers. This wouldn't happen if they were misaligned or mis-projected.

      5. I can also measure the size of a pixel using QGIS's measurement tool, and the length comes out to about 320 x 235 m, i.e., it agrees with the file metadata.

      I have read the documentation and found a few suspicious references in published papers to things like "nominal" pixel size of 250 m, or pixel size of 250 m "at nadir", and this paper makes it look to me as if the physical camera/mirror apparatus would result in pixels that aren't 250m x 250m square, but the authors don't describe in detail the projection and/or transformation used to create the data products so I'm not sure.










      share|improve this question
















      How big is a MODIS 250m pixel in reality?



      This appears to be a question that contains its own answer, but I have several reasons to doubt that the pixel size is actually 250m x 250m:



      1. I downloaded MODIS 250m NDVI data from the USGS site, transformed it from Sin to Geographic (SRID 4326) using the MODIS Reprojection Tool (which has since been replaced, but at the time was the official tool).

      2. Using gdalinfo on the resulting file gives the pixel size as (0.002884053983564 X 0.002884053983564). I assume that this measurement is in decimal degrees.

      3. This online calculator gives the length of one degree of latitude at the latitude of my study area as 111,092.7 m, and of longitude as 81,540.9 m. That would make the pixel dimensions 320m in the N-S direction and 235m in the E-W direction.

      4. I've overlaid the NDVI image onto other data, and the two correspond; for example you can clearly see greener vegetation along rivers. This wouldn't happen if they were misaligned or mis-projected.

      5. I can also measure the size of a pixel using QGIS's measurement tool, and the length comes out to about 320 x 235 m, i.e., it agrees with the file metadata.

      I have read the documentation and found a few suspicious references in published papers to things like "nominal" pixel size of 250 m, or pixel size of 250 m "at nadir", and this paper makes it look to me as if the physical camera/mirror apparatus would result in pixels that aren't 250m x 250m square, but the authors don't describe in detail the projection and/or transformation used to create the data products so I'm not sure.







      remote-sensing modis pixel modis-reprojection-tool cell-size






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 38 mins ago









      Aaron

      38.2k20109254




      38.2k20109254










      asked 4 hours ago









      JohnJohn

      887




      887




















          1 Answer
          1






          active

          oldest

          votes


















          4














          Per https://lpdaac.usgs.gov/dataset_discovery/modis, the viewing swath width of MODIS is 2,330 km, thus a large portion of the image is off-nadir in some way. https://modis.gsfc.nasa.gov/about/specifications.php



          The following forum post gives an explanation of how to calculate pixel size based on viewing position. (Note: still an estimate due to factors outlined in the post)
          https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=2018




          Compute the scan angle, S (in radians), given pixel number:



          S = (I-hp)/H


          where:



           I is the zero-based pixel index
          hp is 1/2 the total number of pixels (zero-based) (for MODIS each scan is 1354 "1km" pixels, 1353 zero-based, so hp = 676.5)
          H is the sensor altitude divided by the pixel size (for MODIS altitude is approximately 700km, so for "1km" pixels, H = 700/1)

          For 500m pixels, hp = 1353, H = 1400 (700/0.5)
          For 250m pixels, hp = 2706, H = 2800 (700/0.25)


          Compute the zenith angle:



          Z = asin(1.111*sin(S)) 


          where Z is the zenith angle.



          Compute the Along-track pixel size:



          Pt = Pn*9*sin(Z-S)/sin(S)


          where Pn is the nadir pixel size (e.g. 1km, 0.5km, 0.25km)



          Compute the Along-scan pixel size:



          Ps = Pt/cos(Z)


          Thus, area is ~ Pt * Ps




          Additional information can be found at https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=277






          share|improve this answer

























          • Excellent answer; these equations are very useful.

            – John
            2 hours ago











          • The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

            – John
            2 hours ago










          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "79"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f315691%2fhow-big-is-a-modis-250m-pixel-in-reality%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          Per https://lpdaac.usgs.gov/dataset_discovery/modis, the viewing swath width of MODIS is 2,330 km, thus a large portion of the image is off-nadir in some way. https://modis.gsfc.nasa.gov/about/specifications.php



          The following forum post gives an explanation of how to calculate pixel size based on viewing position. (Note: still an estimate due to factors outlined in the post)
          https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=2018




          Compute the scan angle, S (in radians), given pixel number:



          S = (I-hp)/H


          where:



           I is the zero-based pixel index
          hp is 1/2 the total number of pixels (zero-based) (for MODIS each scan is 1354 "1km" pixels, 1353 zero-based, so hp = 676.5)
          H is the sensor altitude divided by the pixel size (for MODIS altitude is approximately 700km, so for "1km" pixels, H = 700/1)

          For 500m pixels, hp = 1353, H = 1400 (700/0.5)
          For 250m pixels, hp = 2706, H = 2800 (700/0.25)


          Compute the zenith angle:



          Z = asin(1.111*sin(S)) 


          where Z is the zenith angle.



          Compute the Along-track pixel size:



          Pt = Pn*9*sin(Z-S)/sin(S)


          where Pn is the nadir pixel size (e.g. 1km, 0.5km, 0.25km)



          Compute the Along-scan pixel size:



          Ps = Pt/cos(Z)


          Thus, area is ~ Pt * Ps




          Additional information can be found at https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=277






          share|improve this answer

























          • Excellent answer; these equations are very useful.

            – John
            2 hours ago











          • The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

            – John
            2 hours ago















          4














          Per https://lpdaac.usgs.gov/dataset_discovery/modis, the viewing swath width of MODIS is 2,330 km, thus a large portion of the image is off-nadir in some way. https://modis.gsfc.nasa.gov/about/specifications.php



          The following forum post gives an explanation of how to calculate pixel size based on viewing position. (Note: still an estimate due to factors outlined in the post)
          https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=2018




          Compute the scan angle, S (in radians), given pixel number:



          S = (I-hp)/H


          where:



           I is the zero-based pixel index
          hp is 1/2 the total number of pixels (zero-based) (for MODIS each scan is 1354 "1km" pixels, 1353 zero-based, so hp = 676.5)
          H is the sensor altitude divided by the pixel size (for MODIS altitude is approximately 700km, so for "1km" pixels, H = 700/1)

          For 500m pixels, hp = 1353, H = 1400 (700/0.5)
          For 250m pixels, hp = 2706, H = 2800 (700/0.25)


          Compute the zenith angle:



          Z = asin(1.111*sin(S)) 


          where Z is the zenith angle.



          Compute the Along-track pixel size:



          Pt = Pn*9*sin(Z-S)/sin(S)


          where Pn is the nadir pixel size (e.g. 1km, 0.5km, 0.25km)



          Compute the Along-scan pixel size:



          Ps = Pt/cos(Z)


          Thus, area is ~ Pt * Ps




          Additional information can be found at https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=277






          share|improve this answer

























          • Excellent answer; these equations are very useful.

            – John
            2 hours ago











          • The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

            – John
            2 hours ago













          4












          4








          4







          Per https://lpdaac.usgs.gov/dataset_discovery/modis, the viewing swath width of MODIS is 2,330 km, thus a large portion of the image is off-nadir in some way. https://modis.gsfc.nasa.gov/about/specifications.php



          The following forum post gives an explanation of how to calculate pixel size based on viewing position. (Note: still an estimate due to factors outlined in the post)
          https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=2018




          Compute the scan angle, S (in radians), given pixel number:



          S = (I-hp)/H


          where:



           I is the zero-based pixel index
          hp is 1/2 the total number of pixels (zero-based) (for MODIS each scan is 1354 "1km" pixels, 1353 zero-based, so hp = 676.5)
          H is the sensor altitude divided by the pixel size (for MODIS altitude is approximately 700km, so for "1km" pixels, H = 700/1)

          For 500m pixels, hp = 1353, H = 1400 (700/0.5)
          For 250m pixels, hp = 2706, H = 2800 (700/0.25)


          Compute the zenith angle:



          Z = asin(1.111*sin(S)) 


          where Z is the zenith angle.



          Compute the Along-track pixel size:



          Pt = Pn*9*sin(Z-S)/sin(S)


          where Pn is the nadir pixel size (e.g. 1km, 0.5km, 0.25km)



          Compute the Along-scan pixel size:



          Ps = Pt/cos(Z)


          Thus, area is ~ Pt * Ps




          Additional information can be found at https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=277






          share|improve this answer















          Per https://lpdaac.usgs.gov/dataset_discovery/modis, the viewing swath width of MODIS is 2,330 km, thus a large portion of the image is off-nadir in some way. https://modis.gsfc.nasa.gov/about/specifications.php



          The following forum post gives an explanation of how to calculate pixel size based on viewing position. (Note: still an estimate due to factors outlined in the post)
          https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=2018




          Compute the scan angle, S (in radians), given pixel number:



          S = (I-hp)/H


          where:



           I is the zero-based pixel index
          hp is 1/2 the total number of pixels (zero-based) (for MODIS each scan is 1354 "1km" pixels, 1353 zero-based, so hp = 676.5)
          H is the sensor altitude divided by the pixel size (for MODIS altitude is approximately 700km, so for "1km" pixels, H = 700/1)

          For 500m pixels, hp = 1353, H = 1400 (700/0.5)
          For 250m pixels, hp = 2706, H = 2800 (700/0.25)


          Compute the zenith angle:



          Z = asin(1.111*sin(S)) 


          where Z is the zenith angle.



          Compute the Along-track pixel size:



          Pt = Pn*9*sin(Z-S)/sin(S)


          where Pn is the nadir pixel size (e.g. 1km, 0.5km, 0.25km)



          Compute the Along-scan pixel size:



          Ps = Pt/cos(Z)


          Thus, area is ~ Pt * Ps




          Additional information can be found at https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?tid=277







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          smillersmiller

          2,134217




          2,134217












          • Excellent answer; these equations are very useful.

            – John
            2 hours ago











          • The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

            – John
            2 hours ago

















          • Excellent answer; these equations are very useful.

            – John
            2 hours ago











          • The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

            – John
            2 hours ago
















          Excellent answer; these equations are very useful.

          – John
          2 hours ago





          Excellent answer; these equations are very useful.

          – John
          2 hours ago













          The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

          – John
          2 hours ago





          The equations show that the pixel size varies with pixel position relative to the center of the satellite path, but they do not show size varying with latitude. Am I right to assume that these equations hold everywhere, e.g., even over the poles? If I'm envisioning it correctly, there must be much more overlap between successive passes at the poles than at the equator, meaning that a given location on earth might have different pixel widths in successive passes (i.e., up near the pole it might be close to the center of the path on one pass, further on another).

          – John
          2 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Geographic Information Systems Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f315691%2fhow-big-is-a-modis-250m-pixel-in-reality%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

          Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

          Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org