Amorphous proper classes in MKWhat sort of structure can amorphous sets support?Splitting infinite setsFor models of ZF, if for some $A$ we have $L[A] = L$, what can we deduce about $A$?What sort of structure can amorphous sets support?Some questions about Ackermann set theoryHartogs number and the three power setsCan $mathbbR$ be partitioned into dedekind-finite sets?How many Dedekind-finite sets can $mathbbR$ be partitioned into?Can ZFC be interpreted in a set theory having finitely many ranks?An axiom for collecting proper classesDo choice principles in all generic extensions imply AC in $V$?

Amorphous proper classes in MK


What sort of structure can amorphous sets support?Splitting infinite setsFor models of ZF, if for some $A$ we have $L[A] = L$, what can we deduce about $A$?What sort of structure can amorphous sets support?Some questions about Ackermann set theoryHartogs number and the three power setsCan $mathbbR$ be partitioned into dedekind-finite sets?How many Dedekind-finite sets can $mathbbR$ be partitioned into?Can ZFC be interpreted in a set theory having finitely many ranks?An axiom for collecting proper classesDo choice principles in all generic extensions imply AC in $V$?













4












$begingroup$


Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




    Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




    Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




      Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




      Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










      share|cite|improve this question











      $endgroup$




      Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




      Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




      Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.







      set-theory lo.logic axiom-of-choice






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 53 mins ago









      David Roberts

      17.5k463177




      17.5k463177










      asked 3 hours ago









      Alec RheaAlec Rhea

      1,3331819




      1,3331819




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            51 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325796%2famorphous-proper-classes-in-mk%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            51 mins ago
















          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            51 mins ago














          5












          5








          5





          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$



          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Noah SchweberNoah Schweber

          19.5k349146




          19.5k349146











          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            51 mins ago

















          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            51 mins ago
















          $begingroup$
          Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
          $endgroup$
          – Alec Rhea
          3 hours ago




          $begingroup$
          Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
          $endgroup$
          – Alec Rhea
          3 hours ago




          1




          1




          $begingroup$
          @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          $begingroup$
          @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          1




          1




          $begingroup$
          @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          $begingroup$
          @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          1




          1




          $begingroup$
          Tsk tsk tsk. TSK. TSK. TSK.
          $endgroup$
          – Asaf Karagila
          1 hour ago




          $begingroup$
          Tsk tsk tsk. TSK. TSK. TSK.
          $endgroup$
          – Asaf Karagila
          1 hour ago




          3




          3




          $begingroup$
          @Noah Asaf is calling you uncool for not knowing.
          $endgroup$
          – David Roberts
          51 mins ago





          $begingroup$
          @Noah Asaf is calling you uncool for not knowing.
          $endgroup$
          – David Roberts
          51 mins ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325796%2famorphous-proper-classes-in-mk%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

          Are there any comparative studies done between Ashtavakra Gita and Buddhim?How is it wrong to believe that a self exists, or that it doesn't?Can you criticise or improve Ven. Bodhi's description of MahayanaWas the doctrine of 'Anatta', accepted as doctrine by modern Buddhism, actually taught by the Buddha?Relationship between Buddhism, Hinduism and Yoga?Comparison of Nirvana, Tao and Brahman/AtmaIs there a distinction between “ego identity” and “craving/hating”?Are there many differences between Taoism and Buddhism?Loss of “faith” in buddhismSimilarity between creation in Abrahamic religions and beginning of life in Earth mentioned Agganna Sutta?Are there studies about the difference between meditating in the morning versus in the evening?Can one follow Hinduism and Buddhism at the same time?Are there any prohibitions on participating in other religion's practices?Psychology of 'flow'

          Where is the suspend/hibernate button in GNOME Shell? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)No suspend option in UI on Bionic BeaverHow can I set sleep mode in ubuntu18.04 LTS and what is the short cut key to do so?17.10 suspend not availableUbuntu 18.04 LTS missing sleep optionUbuntu 18.04 LTS - missing suspend option when power button is pressedHow to put Thinkpad X1 Extreme to sleep in Ubuntu 18.10?Suspend Button in interactive power button menu18.04 - Keep programs running after logging outway to disable Hibernate from within gconf-editor so button disappears?How can I hibernate from GNOME Shell?How can I hibernate/suspend from the command line and do so at a specific timeNo permission to suspend/hibernate after upgrading to 12.10MATE - Missing Suspend and Hibernate buttons, pressing power button shutdowns system immediatelyUbuntu 14.04: Suspend, Hibernate and Suspend-hybrid in the menu?Change “power-button-action” comand for “hibernate” option in GNOME 3.18Shutdown / Power off button does always go to suspend on 17.10Hibernate after suspend stopped working in 17.10Why doesn't the keyboard screenshot button work on Ubuntu with GNOME shell?