What's the output of a record needle playing an out-of-speed recordCannibalizing a printer, how to figure out what some of the parts are/doWhat determines the speed of a brushless DC motorDoes the peak torque decrease at rated speed for BLDC motor?What's the relationship between ESC pwm input and output?Controlling the speed of a brushless motor with the HA13535What is the effective speed-control range of a BLDC motor?What's the relationship between DC braking torque and AC turning torque for a given current on a BLDC motorSpeed and position controle of a BLDC motor at the same timeWhat's the best starting point for rotor angle estimation for FOC?How to find the optimal speed of a BLDC motor having hall sensors? Can we change the most efficient speed through the controller?
RSA: Danger of using p to create q
Two films in a tank, only one comes out with a development error – why?
Can a vampire attack twice with their claws using Multiattack?
Why does Kotter return in Welcome Back Kotter?
Arrow those variables!
How does one intimidate enemies without having the capacity for violence?
Is it unprofessional to ask if a job posting on GlassDoor is real?
How to source a part of a file
What's that red-plus icon near a text?
How can bays and straits be determined in a procedurally generated map?
Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?
Did Shadowfax go to Valinor?
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
Why is 150k or 200k jobs considered good when there's 300k+ births a month?
Alternative to sending password over mail?
Is it inappropriate for a student to attend their mentor's dissertation defense?
A case of the sniffles
Does detail obscure or enhance action?
Codimension of non-flat locus
Today is the Center
Is it legal for company to use my work email to pretend I still work there?
Can a monk's single staff be considered dual wielded, as per the Dual Wielder feat?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
DC-DC converter from low voltage at high current, to high voltage at low current
What's the output of a record needle playing an out-of-speed record
Cannibalizing a printer, how to figure out what some of the parts are/doWhat determines the speed of a brushless DC motorDoes the peak torque decrease at rated speed for BLDC motor?What's the relationship between ESC pwm input and output?Controlling the speed of a brushless motor with the HA13535What is the effective speed-control range of a BLDC motor?What's the relationship between DC braking torque and AC turning torque for a given current on a BLDC motorSpeed and position controle of a BLDC motor at the same timeWhat's the best starting point for rotor angle estimation for FOC?How to find the optimal speed of a BLDC motor having hall sensors? Can we change the most efficient speed through the controller?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
add a comment |
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
add a comment |
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
brushless-dc-motor
edited 1 hour ago
Dave Tweed♦
123k9152266
123k9152266
asked 1 hour ago
Gabriel SantosGabriel Santos
213
213
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac 3333.33 text kHz $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-needle-playing-an-out-of-speed-record%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac 3333.33 text kHz $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac 3333.33 text kHz $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac 3333.33 text kHz $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac 3333.33 text kHz $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
edited 41 mins ago
K H
2,360215
2,360215
answered 1 hour ago
TransistorTransistor
88.2k785189
88.2k785189
add a comment |
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
edited 40 mins ago
K H
2,360215
2,360215
answered 1 hour ago
TimWescottTimWescott
6,5991416
6,5991416
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
1
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
answered 1 hour ago
Dave Tweed♦Dave Tweed
123k9152266
123k9152266
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-needle-playing-an-out-of-speed-record%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown