Is it possible for a square root function,f(x), to map to a finite number of integers for all x in domain of f?For integers $a$ and $b gt 0$, and $n^2$ a sum of two square integers, does this strategy find the largest integer $x | x^2 lt n^2(a^2 + b^2)$?Do roots of a polynomial with coefficients from a Collatz sequence all fall in a disk of radius 1.5?A fun little problemWhat is the smallest integer $n$ greater than $1$ such that the root mean square of the first $n$ integers is an integer?on roots of an equationAn integer sequence with integer $k$ normsProof Verification: If $x$ is a nonnegative real number, then $big[sqrt[x]big] = big[sqrtxbig]$Digit after decimal point of radicalsProving that there does not exist an infinite descending sequence of naturals using minimal counterexamplenumber of different ways to represent a positive integer as a binomial coefficient

Arrow those variables!

DC-DC converter from low voltage at high current, to high voltage at low current

Why do I get two different answers for this counting problem?

Can a monk's single staff be considered dual wielded, as per the Dual Wielder feat?

Modeling an IP Address

Do I have a twin with permutated remainders?

Why does Kotter return in Welcome Back Kotter?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Rock identification in KY

Is it unprofessional to ask if a job posting on GlassDoor is real?

How does one intimidate enemies without having the capacity for violence?

How much of data wrangling is a data scientist's job?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Can a vampire attack twice with their claws using Multiattack?

Convert two switches to a dual stack, and add outlet - possible here?

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Why are electrically insulating heatsinks so rare? Is it just cost?

Do infinite dimensional systems make sense?

Why can't I see bouncing of switch on oscilloscope screen?

How to format long polynomial?

Why is consensus so controversial in Britain?

Revoked SSL certificate

What is a clear way to write a bar that has an extra beat?

Are the number of citations and number of published articles the most important criteria for a tenure promotion?



Is it possible for a square root function,f(x), to map to a finite number of integers for all x in domain of f?


For integers $a$ and $b gt 0$, and $n^2$ a sum of two square integers, does this strategy find the largest integer $x | x^2 lt n^2(a^2 + b^2)$?Do roots of a polynomial with coefficients from a Collatz sequence all fall in a disk of radius 1.5?A fun little problemWhat is the smallest integer $n$ greater than $1$ such that the root mean square of the first $n$ integers is an integer?on roots of an equationAn integer sequence with integer $k$ normsProof Verification: If $x$ is a nonnegative real number, then $big[sqrt[x]big] = big[sqrtxbig]$Digit after decimal point of radicalsProving that there does not exist an infinite descending sequence of naturals using minimal counterexamplenumber of different ways to represent a positive integer as a binomial coefficient













1












$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    5 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    5 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    3 hours ago















1












$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    5 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    5 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    3 hours ago













1












1








1


1



$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$




Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







Diehardwalnut

















asked 5 hours ago









DiehardwalnutDiehardwalnut

257110




257110







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    5 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    5 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    3 hours ago












  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    5 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    5 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    3 hours ago







4




4




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
5 hours ago




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
5 hours ago












$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
5 hours ago




$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
5 hours ago












$begingroup$
Justed edited, yes I meant to say $$x in mathbbZ$$
$endgroup$
– Diehardwalnut
3 hours ago




$begingroup$
Justed edited, yes I meant to say $$x in mathbbZ$$
$endgroup$
– Diehardwalnut
3 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



Furthermore
beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
x^2-(x-1)^2&=colorblue2x-1tag2
endalign*



Can you end it now?




Hint: Observe, for instance, that $$mid;2x-3mid>mid x;mid text unless xin[1, 3]$$ $$mid;2x-1mid>mid x;mid text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
    $$y^2 = x^2-x+1,$$
    so $y^2-1=x^2-x$. That is,
    $$(y+1)(y-1) = x(x-1).$$



    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Hint:



      For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



      for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



        Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



        It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



        Furthermore
        beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
        x^2-(x-1)^2&=colorblue2x-1tag2
        endalign*



        Can you end it now?




        Hint: Observe, for instance, that $$mid;2x-3mid>mid x;mid text unless xin[1, 3]$$ $$mid;2x-1mid>mid x;mid text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







        share|cite|improve this answer











        $endgroup$

















          3












          $begingroup$

          First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



          Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



          It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



          Furthermore
          beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
          x^2-(x-1)^2&=colorblue2x-1tag2
          endalign*



          Can you end it now?




          Hint: Observe, for instance, that $$mid;2x-3mid>mid x;mid text unless xin[1, 3]$$ $$mid;2x-1mid>mid x;mid text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







          share|cite|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$

            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
            x^2-(x-1)^2&=colorblue2x-1tag2
            endalign*



            Can you end it now?




            Hint: Observe, for instance, that $$mid;2x-3mid>mid x;mid text unless xin[1, 3]$$ $$mid;2x-1mid>mid x;mid text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







            share|cite|improve this answer











            $endgroup$



            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
            x^2-(x-1)^2&=colorblue2x-1tag2
            endalign*



            Can you end it now?




            Hint: Observe, for instance, that $$mid;2x-3mid>mid x;mid text unless xin[1, 3]$$ $$mid;2x-1mid>mid x;mid text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 5 hours ago









            Dr. MathvaDr. Mathva

            3,215630




            3,215630





















                2












                $begingroup$

                Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                $$y^2 = x^2-x+1,$$
                so $y^2-1=x^2-x$. That is,
                $$(y+1)(y-1) = x(x-1).$$



                So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                  $$y^2 = x^2-x+1,$$
                  so $y^2-1=x^2-x$. That is,
                  $$(y+1)(y-1) = x(x-1).$$



                  So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                    share|cite|improve this answer









                    $endgroup$



                    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 5 hours ago









                    ThéophileThéophile

                    20.4k13047




                    20.4k13047





















                        0












                        $begingroup$

                        Hint:



                        For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                        for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Hint:



                          For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                          for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 3 hours ago









                            J. W. TannerJ. W. Tanner

                            4,4691320




                            4,4691320



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                                Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                                Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org