Precipitating silver(I) salts from the solution of barium(II) cyanate and iodide Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)I have 100 mg of a proteinase K lyophilized powder and I need to make it to a working concentration of 25 mg/mLHow to determine which salt will precipitate from a solution containing multiple ions?Is solubility in Qsp affected by coefficient?Why should I acidify twice in the procedure for qualitative analysis of chloride anions?Adding powdered Pb and Fe to a solutionApparent solubility of Ag2C2O4 in a buffer solutionFinding x and y in Pt(NH3)xClyWhat is the net ionic equation of the following?How to calculate the volume or mass of carbon dioxide gas absorbed by a calcium hydroxide solution?Precipitation of AgCl from the tap water solution of the group 2 chloride

Why does Python start at index 1 when iterating an array backwards?

Storing hydrofluoric acid before the invention of plastics

Best practices for giving outside developer SSH access?

How to deal with a team lead who never gives me credit?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

What are 'alternative tunings' of a guitar and why would you use them? Doesn't it make it more difficult to play?

How can I make names more distinctive without making them longer?

Is the Standard Deduction better than Itemized when both are the same amount?

The logistics of corpse disposal

Single word antonym of "flightless"

How do I stop a creek from eroding my steep embankment?

How to assign captions for two tables in LaTeX?

What does the "x" in "x86" represent?

Does surprise arrest existing movement?

What do you call a plan that's an alternative plan in case your initial plan fails?

Is high blood pressure ever a symptom attributable solely to dehydration?

Why are there no cargo aircraft with "flying wing" design?

Do I really need recursive chmod to restrict access to a folder?

How do I determine if the rules for a long jump or high jump are applicable for Monks?

Did Kevin spill real chili?

I am not a queen, who am I?

Bonus calculation: Am I making a mountain out of a molehill?

If a contract sometimes uses the wrong name, is it still valid?

Examples of mediopassive verb constructions



Precipitating silver(I) salts from the solution of barium(II) cyanate and iodide



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)I have 100 mg of a proteinase K lyophilized powder and I need to make it to a working concentration of 25 mg/mLHow to determine which salt will precipitate from a solution containing multiple ions?Is solubility in Qsp affected by coefficient?Why should I acidify twice in the procedure for qualitative analysis of chloride anions?Adding powdered Pb and Fe to a solutionApparent solubility of Ag2C2O4 in a buffer solutionFinding x and y in Pt(NH3)xClyWhat is the net ionic equation of the following?How to calculate the volume or mass of carbon dioxide gas absorbed by a calcium hydroxide solution?Precipitation of AgCl from the tap water solution of the group 2 chloride










2












$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    9 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    9 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    9 hours ago















2












$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    9 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    9 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    9 hours ago













2












2








2





$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?







inorganic-chemistry aqueous-solution solubility






share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 9 hours ago









andselisk

19.5k664126




19.5k664126






New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 9 hours ago









user77021user77021

111




111




New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    9 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    9 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    9 hours ago












  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    9 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    9 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    9 hours ago







2




2




$begingroup$
"There is more than enough." How did you determine that with out any quantitative calculations?
$endgroup$
– Zhe
9 hours ago




$begingroup$
"There is more than enough." How did you determine that with out any quantitative calculations?
$endgroup$
– Zhe
9 hours ago












$begingroup$
I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
$endgroup$
– user77021
9 hours ago




$begingroup$
I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
$endgroup$
– user77021
9 hours ago




4




4




$begingroup$
Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
$endgroup$
– Zhe
9 hours ago




$begingroup$
Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
$endgroup$
– Zhe
9 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$


Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



$ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



$ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



$ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



$ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



The final concentration of $ceCN-$ is



$ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



The the final concentration of $ceI-$ is



$ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



Conclusion:



Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






share|improve this answer











$endgroup$




















    1












    $begingroup$

    Alternative method to MaxW method:



    Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



    $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



    Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



    $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



    For precipitation of $ceAgCN(s)$:



    $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



    Therefore, $ceAgCN(s)$ will precipitate.



    For precipitation of $ceAgI(s)$:



    $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



    Therefore, $ceAgI(s)$ will not precipitate in this condition.






    share|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "431"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      user77021 is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112803%2fprecipitating-silveri-salts-from-the-solution-of-bariumii-cyanate-and-iodide%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$


      Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



      $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




      Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



      $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



      Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



      $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



      Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



      $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



      $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



      So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



      The final concentration of $ceCN-$ is



      $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



      The the final concentration of $ceI-$ is



      $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



      Conclusion:



      Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



      Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






      share|improve this answer











      $endgroup$

















        4












        $begingroup$


        Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



        $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




        Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



        $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



        Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



        $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



        Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



        $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



        $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



        So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



        The final concentration of $ceCN-$ is



        $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



        The the final concentration of $ceI-$ is



        $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



        Conclusion:



        Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



        Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






        share|improve this answer











        $endgroup$















          4












          4








          4





          $begingroup$


          Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



          $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




          Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



          $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



          Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



          $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



          Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



          $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



          $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



          So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



          The final concentration of $ceCN-$ is



          $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



          The the final concentration of $ceI-$ is



          $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



          Conclusion:



          Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



          Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






          share|improve this answer











          $endgroup$




          Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



          $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




          Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



          $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



          Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



          $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



          Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



          $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



          $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



          So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



          The final concentration of $ceCN-$ is



          $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



          The the final concentration of $ceI-$ is



          $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



          Conclusion:



          Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



          Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 8 hours ago

























          answered 8 hours ago









          MaxWMaxW

          15.7k22261




          15.7k22261





















              1












              $begingroup$

              Alternative method to MaxW method:



              Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



              $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



              Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



              $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



              For precipitation of $ceAgCN(s)$:



              $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



              Therefore, $ceAgCN(s)$ will precipitate.



              For precipitation of $ceAgI(s)$:



              $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



              Therefore, $ceAgI(s)$ will not precipitate in this condition.






              share|improve this answer











              $endgroup$

















                1












                $begingroup$

                Alternative method to MaxW method:



                Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                For precipitation of $ceAgCN(s)$:



                $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                Therefore, $ceAgCN(s)$ will precipitate.



                For precipitation of $ceAgI(s)$:



                $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                Therefore, $ceAgI(s)$ will not precipitate in this condition.






                share|improve this answer











                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Alternative method to MaxW method:



                  Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                  $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                  Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                  $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                  For precipitation of $ceAgCN(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgCN(s)$ will precipitate.



                  For precipitation of $ceAgI(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgI(s)$ will not precipitate in this condition.






                  share|improve this answer











                  $endgroup$



                  Alternative method to MaxW method:



                  Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                  $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                  Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                  $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                  For precipitation of $ceAgCN(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgCN(s)$ will precipitate.



                  For precipitation of $ceAgI(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgI(s)$ will not precipitate in this condition.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 6 hours ago

























                  answered 6 hours ago









                  Mathew MahindaratneMathew Mahindaratne

                  6,348725




                  6,348725




















                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.












                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.











                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112803%2fprecipitating-silveri-salts-from-the-solution-of-bariumii-cyanate-and-iodide%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                      Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                      Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org