How to quickly solve partial fractions equation? The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?

If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?

What is the most efficient way to store a numeric range?

Are there any other methods to apply to solving simultaneous equations?

Button changing its text & action. Good or terrible?

Short story: child made less intelligent and less attractive

The phrase "to the numbers born"?

"as much details as you can remember"

Why doesn't shell automatically fix "useless use of cat"?

Is bread bad for ducks?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

Can you cast a spell on someone in the Ethereal Plane, if you are on the Material Plane and have the True Seeing spell active?

Is an up-to-date browser secure on an out-of-date OS?

Why can't devices on different VLANs, but on the same subnet, communicate?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Keeping a retro style to sci-fi spaceships?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Is it safe to harvest rainwater that fell on solar panels?

What is the meaning of Triage in Cybersec world?

Mathematics of imaging the black hole

Did any laptop computers have a built-in 5 1/4 inch floppy drive?

Getting crown tickets for Statue of Liberty

A female thief is not sold to make restitution -- so what happens instead?



How to quickly solve partial fractions equation?



The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?










2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago















2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago













2












2








2





$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$




Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.







calculus integration indefinite-integrals quadratics partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







weno

















asked 3 hours ago









wenoweno

42311




42311







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago












  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago







1




1




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago












$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago




$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago












$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



$$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



$$1 = A(t + beta) + B(t + alpha)$$



Evaluating $beta$ for $t$:



$$1 = B(alpha - beta)$$



$$B = frac1alpha - beta$$



Similarly, for $A$, sub in $-alpha$:



$$1 = A(beta - alpha)$$



$$A = frac1beta - alpha$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I'll be coming back to this post. This is what I was looking for.
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
    $endgroup$
    – weno
    3 hours ago



















1












$begingroup$

If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
$$A_2 = frac 1(3-1)(3+4) = frac114$$



$$A_3=frac 1(-4-1)(-4-3)=frac135$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Here's your answer
    for general $n$.



    $dfrac1prod_k=1^n (x-a_k)
    =sum_k=1^n dfracb_kx-a_k
    $
    .



    Therefore
    $1
    =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
    =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
    $
    .



    Setting
    $x = a_i$
    for each $i$,
    all the terms
    except the one with $k=i$
    have the factor $a_i-a_i$,
    so
    $1 = b_iprod_j=1, jne i^n (a_i-a_j)
    $

    so that
    $b_i
    =dfrac1prod_j=1, jne i^n (a_i-a_j)
    $
    .



    For $n=2$,
    $b_1
    =dfrac1a_1-a_2
    $
    ,
    $b_2
    =dfrac1a_2-a_1
    $
    .



    For $n=3$,
    $b_1
    =dfrac1(a_1-a_2)(a_1-a_3)
    $
    ,
    $b_2
    =dfrac1(a_2-a_1)(a_2-a_3)
    $
    ,
    $b_3
    =dfrac1(a_3-a_1)(a_3-a_2)
    $
    .






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      3












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago














      3












      3








      3





      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$



      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      DairDair

      1,96711124




      1,96711124











      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago

















      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago




      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago












      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago





      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago












      1












      $begingroup$

      If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



      Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



      For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
      Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
      $$A_2 = frac 1(3-1)(3+4) = frac114$$



      $$A_3=frac 1(-4-1)(-4-3)=frac135$$






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



        Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



        For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
        Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
        $$A_2 = frac 1(3-1)(3+4) = frac114$$



        $$A_3=frac 1(-4-1)(-4-3)=frac135$$






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$






          share|cite|improve this answer









          $endgroup$



          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Mohammad Riazi-KermaniMohammad Riazi-Kermani

          41.6k42061




          41.6k42061





















              0












              $begingroup$

              Here's your answer
              for general $n$.



              $dfrac1prod_k=1^n (x-a_k)
              =sum_k=1^n dfracb_kx-a_k
              $
              .



              Therefore
              $1
              =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
              =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
              $
              .



              Setting
              $x = a_i$
              for each $i$,
              all the terms
              except the one with $k=i$
              have the factor $a_i-a_i$,
              so
              $1 = b_iprod_j=1, jne i^n (a_i-a_j)
              $

              so that
              $b_i
              =dfrac1prod_j=1, jne i^n (a_i-a_j)
              $
              .



              For $n=2$,
              $b_1
              =dfrac1a_1-a_2
              $
              ,
              $b_2
              =dfrac1a_2-a_1
              $
              .



              For $n=3$,
              $b_1
              =dfrac1(a_1-a_2)(a_1-a_3)
              $
              ,
              $b_2
              =dfrac1(a_2-a_1)(a_2-a_3)
              $
              ,
              $b_3
              =dfrac1(a_3-a_1)(a_3-a_2)
              $
              .






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Here's your answer
                for general $n$.



                $dfrac1prod_k=1^n (x-a_k)
                =sum_k=1^n dfracb_kx-a_k
                $
                .



                Therefore
                $1
                =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                $
                .



                Setting
                $x = a_i$
                for each $i$,
                all the terms
                except the one with $k=i$
                have the factor $a_i-a_i$,
                so
                $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                $

                so that
                $b_i
                =dfrac1prod_j=1, jne i^n (a_i-a_j)
                $
                .



                For $n=2$,
                $b_1
                =dfrac1a_1-a_2
                $
                ,
                $b_2
                =dfrac1a_2-a_1
                $
                .



                For $n=3$,
                $b_1
                =dfrac1(a_1-a_2)(a_1-a_3)
                $
                ,
                $b_2
                =dfrac1(a_2-a_1)(a_2-a_3)
                $
                ,
                $b_3
                =dfrac1(a_3-a_1)(a_3-a_2)
                $
                .






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .






                  share|cite|improve this answer









                  $endgroup$



                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 14 mins ago









                  marty cohenmarty cohen

                  75.3k549130




                  75.3k549130



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                      Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                      Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org