Finding the area between two curves with Integrate The 2019 Stack Overflow Developer Survey Results Are InHow to evaluate this indefinite integral $csc(4x)sin(x)$Finding the centroid of the area between two curvesRevolving the area between two functions about an axisArea enclosed by two functionsComputing the area between two curvesIntegrate to calculate enclosed areaInteresting discrepencies between integrate functionsFinding the volume enclosed by two surfaces of revolutionFinding an area enclosed by 4 curvesApproximate the relationship between 6 nonlinear functions involving elliptic integrals

Dropping list elements from nested list after evaluation

Likelihood that a superbug or lethal virus could come from a landfill

Can withdrawing asylum be illegal?

What do hard-Brexiteers want with respect to the Irish border?

The difference between dialogue marks

Unitary representations of finite groups over finite fields

How to obtain a position of last non-zero element

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

How to type a long/em dash `—`

Why can't devices on different VLANs, but on the same subnet, communicate?

How do I free up internal storage if I don't have any apps downloaded?

Can we generate random numbers using irrational numbers like π and e?

Can an undergraduate be advised by a professor who is very far away?

How much of the clove should I use when using big garlic heads?

A word that means fill it to the required quantity

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Can I have a signal generator on while it's not connected?

Is Cinnamon a desktop environment or a window manager? (Or both?)

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Deal with toxic manager when you can't quit

Does adding complexity mean a more secure cipher?

How do PCB vias affect signal quality?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?



Finding the area between two curves with Integrate



The 2019 Stack Overflow Developer Survey Results Are InHow to evaluate this indefinite integral $csc(4x)sin(x)$Finding the centroid of the area between two curvesRevolving the area between two functions about an axisArea enclosed by two functionsComputing the area between two curvesIntegrate to calculate enclosed areaInteresting discrepencies between integrate functionsFinding the volume enclosed by two surfaces of revolutionFinding an area enclosed by 4 curvesApproximate the relationship between 6 nonlinear functions involving elliptic integrals










2












$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    34 mins ago















2












$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    34 mins ago













2












2








2





$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?







calculus-and-analysis






share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 16 mins ago









m_goldberg

88.6k873200




88.6k873200






New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 53 mins ago









RyanRyan

111




111




New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    34 mins ago
















  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    34 mins ago















$begingroup$
You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
$endgroup$
– Michael E2
34 mins ago




$begingroup$
You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
$endgroup$
– Michael E2
34 mins ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Use Assumptions:



Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


Mathematica graphics



Or try RealAbs instead of Abs:



Integrate[RealAbs[f[x] - g[x]], x]


Mathematica graphics



(They are equivalent antiderivatives.)



To get the area between the graphs, you need also to solve for the points of intersection.



area = Integrate[
Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


Mathematica graphics



The area is approximately:



N[area]
(* 5.57475 *)





share|improve this answer











$endgroup$












  • $begingroup$
    RealAbs is awesome to know about! :O
    $endgroup$
    – Kagaratsch
    30 mins ago


















1












$begingroup$

You need to add assumptions, like this



 Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


Mathematica graphics






share|improve this answer









$endgroup$




















    0












    $begingroup$

    Assuming your functions



    f[x_] := 3 Sin[x] 
    g[x_] := x - 1


    are real valued, you can use square root of square to parametrize the absolute value. This then gives:



    Integrate[Sqrt[(f[x] - g[x])^2], x]



    (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
    3 Sin[x]))







    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Ryan is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195049%2ffinding-the-area-between-two-curves-with-integrate%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$












      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        30 mins ago















      2












      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$












      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        30 mins ago













      2












      2








      2





      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$



      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)






      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 27 mins ago

























      answered 31 mins ago









      Michael E2Michael E2

      150k12203482




      150k12203482











      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        30 mins ago
















      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        30 mins ago















      $begingroup$
      RealAbs is awesome to know about! :O
      $endgroup$
      – Kagaratsch
      30 mins ago




      $begingroup$
      RealAbs is awesome to know about! :O
      $endgroup$
      – Kagaratsch
      30 mins ago











      1












      $begingroup$

      You need to add assumptions, like this



       Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


      Mathematica graphics






      share|improve this answer









      $endgroup$

















        1












        $begingroup$

        You need to add assumptions, like this



         Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


        Mathematica graphics






        share|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          You need to add assumptions, like this



           Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


          Mathematica graphics






          share|improve this answer









          $endgroup$



          You need to add assumptions, like this



           Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


          Mathematica graphics







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 31 mins ago









          NasserNasser

          58.7k490206




          58.7k490206





















              0












              $begingroup$

              Assuming your functions



              f[x_] := 3 Sin[x] 
              g[x_] := x - 1


              are real valued, you can use square root of square to parametrize the absolute value. This then gives:



              Integrate[Sqrt[(f[x] - g[x])^2], x]



              (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
              3 Sin[x]))







              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                Assuming your functions



                f[x_] := 3 Sin[x] 
                g[x_] := x - 1


                are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                Integrate[Sqrt[(f[x] - g[x])^2], x]



                (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                3 Sin[x]))







                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Assuming your functions



                  f[x_] := 3 Sin[x] 
                  g[x_] := x - 1


                  are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                  Integrate[Sqrt[(f[x] - g[x])^2], x]



                  (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                  3 Sin[x]))







                  share|improve this answer









                  $endgroup$



                  Assuming your functions



                  f[x_] := 3 Sin[x] 
                  g[x_] := x - 1


                  are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                  Integrate[Sqrt[(f[x] - g[x])^2], x]



                  (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                  3 Sin[x]))








                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 32 mins ago









                  KagaratschKagaratsch

                  4,83831348




                  4,83831348




















                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.












                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.











                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195049%2ffinding-the-area-between-two-curves-with-integrate%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                      Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                      Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»