What is the purpose of the constant in the probability density function The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?

Are USB sockets on wall outlets live all the time, even when the switch is off?

What is the steepest angle that a canal can be traversable without locks?

"To split hairs" vs "To be pedantic"

Could a US political party gain complete control over the government by removing checks & balances?

How can I create a character who can assume the widest possible range of creature sizes?

How to manage monthly salary

What is the use of option -o in the useradd command?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Is three citations per paragraph excessive for undergraduate research paper?

Deadlock Graph and Interpretation, solution to avoid

How to make payment on the internet without leaving a money trail?

Is this food a bread or a loaf?

Pristine Bit Checking

Spanish for "widget"

Can't find the latex code for the ⍎ (down tack jot) symbol

Geography at the pixel level

Why can Shazam do this?

What does "rabbited" mean/imply in this sentence?

What is this 4-propeller plane?

What is the best strategy for white in this position?

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

Monty Hall variation

How to reverse every other sublist of a list?

What can other administrators access on my machine?



What is the purpose of the constant in the probability density function



The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?










1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    3 hours ago
















1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    3 hours ago














1












1








1





$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$




I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?







probability statistics probability-distributions gaussian-integral






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









BolboaBolboa

398516




398516







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    3 hours ago













  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    3 hours ago








1




1




$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
3 hours ago





$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
3 hours ago











2 Answers
2






active

oldest

votes


















2












$begingroup$

If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    3 hours ago



















2












$begingroup$

It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      3 hours ago
















    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      3 hours ago














    2












    2








    2





    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$



    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    CyclotomicFieldCyclotomicField

    2,4931314




    2,4931314







    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      3 hours ago













    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      3 hours ago








    1




    1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    3 hours ago





    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    3 hours ago












    2












    $begingroup$

    It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






        share|cite|improve this answer









        $endgroup$



        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        GReyesGReyes

        2,39815




        2,39815



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

            Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

            Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org