Caudata Índice Morfología Biología Evolución y sistemática Lista de familias Referencias Bibliografía Véase también Enlaces externos Menú de navegación« Caudata »«Class Amphibia Gray, 1825. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness»Earliest known crown-group salamandersCalibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1Fossils, molecules, divergence times, and the origin of lissamphibiansHigher-level salamander relationships and divergence dates inferred from complete mitochondrial genomesBiology of AmphibiansEstudio sobre la capacidad de regeneración en salamandrasEncyclopedia of Paleoherpetology Part 2ArchivadoA Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North AmericaTetrapod phylogeny inferred from 18s and 28s ribosomal RNA sequences and a review of the evidence for amniote relationshipsA molecular perspective on lissamphibian phylogenyMolecular evidence for the early history of living amphibiansThe complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogenyEarly tetrapod relationships revisitedDates, nodes and character conflict: addressing the lissamphibian origin problemThe Palaeozoic Ancestry of Salamanders, Frogs and CaeciliansResolving deep phylogenetic relationships in salamanders: Analyses of mitochondrial and nuclear genomic dataArchivadoThe Amphibian Tree of LifeOntogeny discombobulates phylogeny: Paedomorphosis and higher-level salamander relationshipsGlobal patterns of diversification in the history of modern amphibiansVertebral development of modern salamanders provides insights into a unique event of their evolutionary historyLate Jurassic salamanders from northern ChinaEvolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methodsOntogenetic evidence for the Paleozoic ancestry of SalamandersRe-evaluation of Mynbulakia Nesov, 1981 (Lissamphibia: Caudata) and description of a new salamander genus from the Late Cretaceous of UzbekistanPhylogenetic relationships of the salamander families: an analysis of the congruence among morphological and molecular charactersJeholotriton paradoxus (Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, ChinaA new short-bodied salamander from the Upper Jurassic/Lower Cretaceous of ChinaA new Early Cretaceous salamander (Regalerpeton weichangensis gen. et sp. nov.) from the Huajiying Formation of northeastern ChinaCaudata en Tree of LifeCaudata00574388300310225urlCaudata3000294751895317358482935322910351945123683Caudata

CaudataÓrdenes de vertebrados


CryptobranchoideaSalamandroideaSirenoideacladoanfibiosespeciescontinenteshemisferio norteSudaméricaNorteaméricamontañas Apalachesanurosoído medioperíodoJurásicoperíodoPérmicosalamandra gigante de Japóncráneoshuesosranasoído mediofertilizaciónCryptobranchidaeHynobiidaeSirenidaelarvariobranquiaspulmonesajolotebosquesespeciesescamasregenerarautotomíacaudalfósilesespecímenescladoKarauridaeextintosespecieperíodoJurásico SuperiorKazajistánJurásico MedioKirguistánOxfordienseTriásicorelaciones filogenéticasLissamphibiaADN mitocondrialADN ribosómicoceciliashipótesisfósilranasLaurasiaGondwanagenescladomonofiliaCryptobranchidaeHynobiidaeSirenidaeSalamandridaeAmbystomatidaeDicamptodontidaeProteidaeRhyacotritonidaeAmphiumidaePlethodontidaeNeocaudataCryptobranchoideaSalamandroideaSirenoideafertilizacióncarácterplesiomórficoHynobiidaeCryptobranchidaeSirenidaeProteidaeAmbystomatidaeDicamptodontidaeSalamandridaeRhyacotritonidaeAmphiumidaePlethodontidaeHynobiidaeCryptobranchidaeRhyacotritonidaeAmphiumidaePlethodontidaeProteidaeSirenidaeAmbystomatidaeSalamandridaeSirenidaeHynobiidaeCryptobranchidaeProteidaeRhyacotritonidaeAmphiumidaePlethodontidaeSalamandridaeAmbystomatidaeDicamptodontidaeCladogramas


















Symbol question.svg

 

Caudados

Rango temporal: Jurásico Medio-Reciente

PreЄ

Є

O

S

D

C

P

T

J

K

Pg

N









Salamandra salamandra MHNT 1.jpg

Salamandra salamandra.

Taxonomía

Reino:

Animalia

Filo:

Chordata
Superclase:
Tetrapoda

Clase:

Amphibia
Subclase:
Lissamphibia

Orden:

Caudata
Scopoli, 1777
Distribución

Subórdenes

Cryptobranchoidea
Salamandroidea
Sirenoidea


Los caudados (Caudata), conocidos como salamandras y tritones, son un clado de anfibios compuesto por 695 especies vivas[1][2]​ que se distribuyen en los continentes del hemisferio norte con la excepción de unas pocas especies en el norte de Sudamérica. Un tercio de las salamandras conocidas habitan en Norteamérica. La concentración más alta se da en la región de las montañas Apalaches. A diferencia de los anuros (ranas), poseen una cola bien desarrollada y carecen de oído medio. Los registros más antiguos de salamandras datan de mediados del período Jurásico (Batoniano), siendo la especie Chunerpeton tianyiensis la representante más antigua de las salamandras modernas (Urodela).[3]​ Los últimos estudios moleculares datan la divergencia con respecto a las ranas en el período Pérmico.[4][5][6]




Índice





  • 1 Morfología


  • 2 Biología


  • 3 Evolución y sistemática


  • 4 Lista de familias


  • 5 Referencias


  • 6 Bibliografía


  • 7 Véase también


  • 8 Enlaces externos




Morfología


Las salamandras exhiben una larga cola durante todas las fases de su vida. La mayoría son de tamaño pequeño y no superan los 30 cm de longitud, aunque especies como la salamandra gigante de Japón pueden sobrepasar el metro de largo. El cuerpo es alargado, estando provisto de dos pares de patas cortas de aproximadamente de la misma longitud, pero en algunos de estos casos están reducidas o incluso el par posterior ausente. Poseen cráneos anchos y planos con huesos parietales fusionados y provistos de dientes curvados. Presentan una cintura pélvica en su mayor parte cartilaginosa, careciendo de una cintura escapular dérmica. Las larvas son similares a los adultos y poseen dientes en ambas mandíbulas. A diferencia de las ranas, las salamandras no tienen oído medio.[7]



Biología


La fertilización es externa en los grupos Cryptobranchidae, Hynobiidae y Sirenidae, mientras que los otros presentan una fertilización interna a pesar de la ausencia en los machos de un órgano copulador.[7]​ Exhiben un desarrollo larvario antes de la edad adulta, con presencia de branquias externas que son posteriormente sustituidas por pulmones. Un gran número de salamandras presentan pedomorfismo, en cuyo caso se retienen características del estado larval. Existen especies, como el ajolote, en que la transformación no ocurre de una forma regular, apareciendo aspectos propios del adulto en la fase larvaria, que puede prolongarse de forma irregular.


Usualmente en los bosques. Algunas especies son acuáticas durante toda su vida, mientras que algunas vuelven al agua de forma intermitente y otras son completamente terrestres en su edad adulta. Los caudados se parecen superficialmente a los lagartos, pero se distinguen fácilmente por la ausencia de escamas. Las salamandras destacan entre los vertebrados cuadrúpedos modernos por ser capaces de regenerar extremidades, colas y órganos internos después de ser amputados.[8]​ Esta habilidad le permite a algunas especies poseer autotomía caudal como medio para escapar de potenciales depredadores.



Evolución y sistemática





Karaurus sharovi es uno de los caudados más antiguos de los que se tienen registros.


Los registros fósiles más antiguos de salamandras corresponden a los especímenes del clado Karauridae, el cual es definido como el grupo hermano de las salamandras modernas (Urodela).[9]​ Por otra parte, las posiciones del resto de los grupos extintos de salamandras (Batrachosauroididae, Prosirenidae y Scapherpetontidae) no han sido aún esclarecides debido al escaso registro fósil. La especie Karaurus sharovi, cuyos registros datan del período Jurásico Superior (hace aproximadamente 152 Ma en el Kimeridgiano) de Kazajistán, es una de las más primitivas dentro los caudados,[10]​ mientras que Kokartus honorarius del Jurásico Medio (Batoniano) de Kirguistán, es 13 millones de años más antiguo que Karaurus,[11]​ así como la especie china Beiyanerpeton jianpingensis, el salamandroideo más antiguo conocido (Oxfordiense).[12]Triassurus sixtelae es un espécimen problemático que comparte solo dos características con las salamandras y que presenta un muy reducido tamaño y un pobre grado de osificaciones, lo que se atribuiría a un potencial estado larval.[13]Triassurus data de finales del período Triásico, por lo que podría corresponder al registro más antiguo de una salamandra.[10]


Los primeros estudios de las relaciones filogenéticas de las salamandras con respecto a los demás anfibios modernos (Lissamphibia), en los cuales se emplearon datos de ADN mitocondrial y ADN ribosómico nuclear, sustentaban una relación cercana con las cecilias (grupo que fue denominado Procera).[14][15][16][17]​ Esta hipótesis ayudaba a explicar los patrones de distribución y el registro fósil de los lisanfibios, dado el hecho de que las ranas están distribuidas en casi todos los continentes mientras que las salamandras y las cecilias presentan una muy marcada distribución en regiones que alguna vez formaron parte de Laurasia y Gondwana respectivamente. Sin embargo, los análisis posteriores y recientes en los que se han ocupado grandes bases de datos tanto de genes nucleares como mitocondriales, o una combinación de ambos, establecen a las ranas y las salamandras como grupos hermanos, cuyo clado es denominado Batrachia. Este grupo es reafirmado por estudios de datos morfológicos (incluyendo el de especímenes fósiles).[18][19][20]


La monofilia de la mayoría de los principales grupos de salamandras actuales se encuentran hoy en día bien estabilizados,[21][6]​ estando estos generalmente distribuidos en cinco ramas: Un clado formado por Cryptobranchidae e Hynobiidae, Sirenidae y otros dos grupo, donde el primero está conformado por Salamandridae, Ambystomatidae, Dicamptodontidae) y Proteidae, y el segundo por los grupos Rhyacotritonidae, Amphiumidae y Plethodontidae. A pesar del creciente número de estudios, las relaciones filogenéticas entre cada uno de estos clados han sido difíciles de resolver.[22][23]​ Así, se dividen en tres subórdenes, y el clado Neocaudata se suele usar para agrupar Cryptobranchoidea y Salamandroidea, separado de Sirenoidea.


Los primeros estudios moleculares posicionaban a Sirenidae como el grupo hermano del resto de las salamandras, pero análisis posteriores de secuencias de genes nucleares sugerían al clado Cryptobranchoidea (Cryptobranchidae e Hynobiidae) como el más basal.[24][23][25]​ Por otra parte, Zhang & Wake (2009) volvieron a posicionar a Sirenidae acorde a los primeros estudios, respaldando, además, al clado conformado por aquellas grupos con fertilización interna, por lo que la fertilización externa (presente en Sirenidae, Cryptobranchidae e Hynobiidae) sería un carácter plesiomórfico.[6]








Caudata






Karauridae†








Karaurus





Kokartus





Marmorerpeton






Hylaeobatrachus



Urodela












Hynobiidae





Cryptobranchidae












Sirenidae

















Proteidae

















Ambystomatidae





Dicamptodontidae






Salamandridae

















Rhyacotritonidae











Amphiumidae





Plethodontidae













Urodela












Hynobiidae





Cryptobranchidae


















Rhyacotritonidae











Amphiumidae





Plethodontidae



















Proteidae





Sirenidae












Ambystomatidae





Salamandridae










Urodela






Sirenidae

















Hynobiidae





Cryptobranchidae


















Proteidae











Rhyacotritonidae











Amphiumidae





Plethodontidae














Salamandridae











Ambystomatidae





Dicamptodontidae








Cladogramas basados en los trabajos de Wiens et al. (2005)[24]​ y Marjanovic & Laurin (2007)[5]​ (A), Frost et al. (2006)[23]​ (B) y Zhang & Wake (2009) (C).[6]



Lista de familias


Se reconocen las siguientes familias actuales según ASW:[1]



  • Ambystomatidae Gray, 1850 (37 sp.)


  • Amphiumidae Gray, 1825 (3 sp.)


  • Cryptobranchidae Fitzinger, 1826 (4 sp.)


  • Hynobiidae Cope, 1859 (66 sp.)


  • Plethodontidae Gray, 1850 (453 sp.)


  • Proteidae Gray, 1825 (8 sp.)


  • Rhyacotritonidae Tihen, 1958 (4 sp.)


  • Salamandridae Goldfuss, 1820 (116 sp.)


  • Sirenidae Gray, 1825 (4 sp.)

y las extintas:[26]


  • †Batrachosauroididae Auffenberg, 1958

  • †Karauridae Ivachnenko, 1978

  • †Scapherpetontidae Auffenberg & Goin, 1959


Referencias



  1. ab Frost, D.R. « Caudata ». Amphibian Species of the World: an Online Reference. Version 6.0. (en inglés). Nueva York, EEUU: Museo Americano de Historia Natural. Consultado el 7 de septiembre de 2015. 



  2. Blackburn, D.C.; Wake, D.B. (2011). «Class Amphibia Gray, 1825. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness». Zootaxa 3148: 39-55. 


  3. Gao, K. & Shubin, N. H. (2003) Earliest known crown-group salamanders. Nature 422, 424?428.


  4. Hugall, A. F. et al. (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology 56:543–563.


  5. ab Marjanović, D. & Laurin, M. (2007) Fossils, molecules, divergence times, and the origin of lissamphibians. Systematic Biology 56, 369-388.


  6. abcd Zhang, P. & Wake, D. B. (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution 53, 492-508.


  7. ab Duellman, W. E. & Trueb, L. (1994) Biology of Amphibians. Johns Hopkins University Press. ISBN 978-0-8018-4780-6.


  8. Estudio sobre la capacidad de regeneración en salamandras


  9. Estes, R. (1998) Encyclopedia of Paleoherpetology Part 2

    • Archivado el 14 de diciembre de 2007 en la Wayback Machine.. München:Pfeil.



  10. ab Ivanchenko, M. (1978) Urodeles from the Triassic and Jurassic of Soviet central Asia. Paleontol. Zhurn. 12:362-368.


  11. Nesov, L. A. (1988) Late Mesozoic amphibians and lizards of Soviet Middle Asia. Acta Zoologica Cracov 31(14):475-486.


  12. Ke-Qin Gao and Neil H. Shubin. Late Jurassic salamandroid from western Liaoning, China. PNAS 2012 : 1009828109v1-201009828.


  13. Evans, S. E. et al. (2005) A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America. Zoological Journal of the Linnean Society 143:599–616.


  14. Hedges, S. B. et al. (1990) Tetrapod phylogeny inferred from 18s and 28s ribosomal RNA sequences and a review of the evidence for amniote relationships. Molecular Phylogenetics and Evolution 7:607-633.


  15. Hedges, S. B. & Maxson, L. R. (1993) A molecular perspective on lissamphibian phylogeny. Herpetol. Monogr 7:27-42.


  16. Feller, A. E. & Hedges, S. B. (1998) Molecular evidence for the early history of living amphibians. Molecular Phylogenetics and Evolution 9:509–516.


  17. Zhang, P. et al. (2003) The complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogeny. Molecular Phylogenetics and Evolution 28:620-626.


  18. Ruta, M. et al.(2003a) Early tetrapod relationships revisited. Biological Reviews 78, 251-345.


  19. Ruta, M. & Coates, M. I. (2007) Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5:69-122.


  20. Carroll, R. L. (2007) The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians. Zoological Journal of the Linnean Society 150: 1-140.


  21. Larson, A. et al. (2003) Phylogenetic systematics of salamanders (Amphibia: Urodela), a review. Pp. 31-108 in Reproductive Biology and Phylogeny of Urodela (D. M. Sever, ed.) Science Publishers, Inc., Enfield (NH), USA.


  22. Weisrock, D. W. et al. (2005) Resolving deep phylogenetic relationships in salamanders: Analyses of mitochondrial and nuclear genomic data

    • Archivado el 30 de septiembre de 2009 en la Wayback Machine.. Systematic Biology 54:758-777.



  23. abc Frost et al. (2006) The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1–291.


  24. ab Wiens, J. J. et al. (2005) Ontogeny discombobulates phylogeny: Paedomorphosis and higher-level salamander relationships. Systematic Biology 54:91-110.


  25. Roelants, K. et al. (2007) Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences of the USA 104: 887-892.


  26. Blackburn & Wake, 2011 : Class Amphibia Gray, 1825. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, n°3148, p.39-55



Bibliografía


  • Boisvert, C. A. (2009) Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, Volume 312B, Number 1, p.1-29.

  • Gao, K. & Shubin, N. H. (2001) Late Jurassic salamanders from northern China. Nature 410, 574–577

  • Germain, D. & Laurin, M. (2009) Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods. Evolution & Development 11: 170-190.

  • Schoch, R. R. & Carroll, R. L. (2003) Ontogenetic evidence for the Paleozoic ancestry of Salamanders. Evolution and Development, v. 5, 2003, pp. 314-324.

  • Skutschas, P. P. (2009) Re-evaluation of Mynbulakia Nesov, 1981 (Lissamphibia: Caudata) and description of a new salamander genus from the Late Cretaceous of Uzbekistan. Journal of Vertebrae Paleontology 29(3):659-664.

  • Templeton, A. R. (2001) Phylogenetic relationships of the salamander families: an analysis of the congruence among morphological and molecular characters. Herpetological Monographs 7 (7): 77–93. 1993. c1993. doi:10.2307/1466953.

  • Wang, Y. & Rose, C. (2005) Jeholotriton paradoxus (Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 25(3): 523-532.

  • Wang, Y. & Evans, S. E. (2006) A new short-bodied salamander from the Upper Jurassic/Lower Cretaceous of China. Acta Palaeontologica Polonica, 51(1): 127-130.

  • Zhang, P. et al. (2009) A new Early Cretaceous salamander (Regalerpeton weichangensis gen. et sp. nov.) from the Huajiying Formation of northeastern China. Cretaceous Research 30, 551-558.


Véase también


  • Salamandra (mitología)


Enlaces externos



  • Wikispecies tiene un artículo sobre Caudata.


  • Wikimedia Commons alberga una categoría multimedia sobre Caudata.

  • Caudata en Tree of Life


.mw-parser-output .mw-authority-control .navbox hr:last-childdisplay:none.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projectsdisplay:none.mw-parser-output .mw-authority-control .mw-mf-linked-projectsdisplay:flex;padding:0.5em;border:1px solid #c8ccd1;background-color:#eaecf0;color:#222222.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul limargin-bottom:0






  • Wd Datos: Q53663


  • Commonscat Multimedia: Caudata


  • Wikispecies Especies: Caudata









Popular posts from this blog

Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org