Fylgia amazonica Referencias Enlaces externos Menú de navegación«World Odonata List»"Fylgia amazonica"22514027639895052140593186159004753966

Insectos no amenazadosBrachydiplacinaeGéneros monotípicos de insectosEspecies descritas en 1889


única especiefamiliaLibellulidaeLatinoaméricaVenezuelaBrasil





















Symbol question.svg

 

Fylgia amazonica

Fylgia amazonica (4230336895).jpg
Estado de conservación

Preocupación menor (LC)
Preocupación menor (UICN 3.1)
Taxonomía

Reino:

Animalia

Filo:

Arthropoda

Clase:

Insecta

Orden:

Odonata

Familia:

Libellulidae
Subfamilia:
Brachydiplacinae

Género:

Fylgia
Kirby, 1889

Especie:

F. amazonica
Kirby, 1889

Fylgia amazonica es la única especie del género Fylgia, en la familia Libellulidae. Vive en Latinoamérica, desde Venezuela hasta el norte de Brasil. Es una especie propia de bosques profundos que cría en charcas estancadas.



Referencias



  • Martin Schorr; Dennis Paulson. «World Odonata List». Universidad de Puget Sound. Consultado el 12 de diciembre de 2016. 

  • von Ellenrieder, N. (2007). "Fylgia amazonica". Lista Roja de la UICN Versión 2010.3. Unión Internacional para la Conservación de la Naturaleza


Enlaces externos



  • Wikispecies tiene un artículo sobre Fylgia amazonica.


  • Wikimedia Commons alberga una categoría multimedia sobre Fylgia amazonica.


.mw-parser-output .mw-authority-control .navbox hr:last-childdisplay:none.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projectsdisplay:none.mw-parser-output .mw-authority-control .mw-mf-linked-projectsdisplay:flex;padding:0.5em;border:1px solid #c8ccd1;background-color:#eaecf0;color:#222222.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul limargin-bottom:0






  • Wd Datos: Q147430







Popular posts from this blog

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Eliminatorias de Conmebol para la Copa Mundial de Fútbol de 2006 Índice Tabla de posiciones final Partidos Goleadores Repesca Intercontinental Clasificados Véase también Referencias Enlaces externos Menú de navegación2:0 (1:0)2:2 (2:0)4:1 (2:1)5:0 (2:0)1:2 (1:1)0:3 (0:3)2:1 (1:0)4:0 (2:0)4:1 (1:1)1:0 (1:0)2:1 (1:1)0:1 (0:1)2:1 (1:0)3:0 (0:0)1:1 (0:1)2:1 (0:0)0:1 (0:1)0:01:1 (0:1)3:3 (2:0)0:2 (0:1)1:0 (0:0)0:3 (0:1)0:00:2 (0:2)2:1 (1:1)0:1 (0:0)1:3 (0:2)2:1 (1:0)3:1 (1:0)3:2 (3:0)0:00:05:0 (3:0)1:1 (0:1)1:3 (0:1)1:0 (0:0)3:1 (3:0)1:0 (0:0)0:04:2 (3:0)1:0 (0:0)1:1 (1:0)2:5 (0:2)2:0 (0:0)0:01:1 (1:0)0:00:03:1 (1:1)3:2 (2:1)1:0 (1:0)2:1 (0:0)1:0 (0:0)1:0 (0:0)0:01:1 (0:1)1:2 (0:0)5:2 (2:2)1:0 (0:0)3:1 (2:0)2:1 (1:0)1:0 (0:0)2:2 (1:2)1:1 (0:0)3:1 (2:0)2:0 (0:0)1:1 (0:1)5:0 (1:0)4:1 (2:0)0:03:0 (2:0)2:1 (1:0)3:1 (3:0)4:1 (2:1)1:0 (1:0)4:1 (1:0)1:2 (1:1)5:0 (4:0)3:2 (1:0)0:00:1 (0:0)1:1 (1:0)1:1 (0:1)2:0 (0:0)1:0 (0:0)0:1 (0:1)0:03:0 (1:0)4:1 (3:0)ReporteReporteGoleadores de las Eliminatorias Sudamericanas 2006.Eliminatorias Sudamericanas 2006 - FIFAEliminatorias Sudamericanas 2006 - RSSSF

Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal