Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Determine whether the series converges or diverges.Determine whether the series $sum_n=1^inftyleft(fracnn+1right)^n^2$ convergesTo test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$
Did the new image of black hole confirm the general theory of relativity?
Strange behaviour of Check
AWS IAM: Restrict Console Access to only One Instance
What was the last x86 CPU that did not have the x87 floating-point unit built in?
How to say that you spent the night with someone, you were only sleeping and nothing else?
Can I throw a longsword at someone?
Fishing simulator
Why is there no army of Iron-Mans in the MCU?
Can a non-EU citizen traveling with me come with me through the EU passport line?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
When is phishing education going too far?
Who can trigger ship-wide alerts in Star Trek?
Stop battery usage [Ubuntu 18]
When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?
How to say 'striped' in Latin
Autumning in love
90's book, teen horror
Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members
Estimate capacitor parameters
Determine whether f is a function, an injection, a surjection
Are my PIs rude or am I just being too sensitive?
What LEGO pieces have "real-world" functionality?
Is dark matter really a meaningful hypothesis?
How does the Nova's Burn power work at the 7-9 level?
Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Determine whether the series converges or diverges.Determine whether the series $sum_n=1^inftyleft(fracnn+1right)^n^2$ convergesTo test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
sequences-and-series convergence
edited 7 mins ago
user21820
40.2k544163
40.2k544163
asked 3 hours ago
MD3MD3
462
462
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
edited 3 hours ago
answered 3 hours ago
Chinnapparaj RChinnapparaj R
6,54021029
6,54021029
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
answered 3 hours ago
Robert IsraelRobert Israel
331k23221478
331k23221478
add a comment |
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
answered 1 hour ago
Claude LeiboviciClaude Leibovici
126k1158135
126k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago