Why does this expression simplify as such?General linear hypothesis test statistic: equivalence of two expressionsSlope Derivation for the variance of a least square problem via Matrix notationCovariance of OLS estimator and residual = 0. Where is the mistake?A doubt on SUR modelWhy trace of $I−X(X′X)^-1X′$ is $n-p$ in least square regression when the parameter vector $beta$ is of p dimensions?Getting the posterior for Bayesian linear regression with a flat priorDistribution of coefficients in linear regressionFitted values and residuals: are they random vectors?Proving that Covariance of residuals and errors is zeroWhat is the relationship of long and short regression when we have an intercept?

What features enable the Su-25 Frogfoot to operate with such a wide variety of fuels?

The Digit Triangles

What to do when eye contact makes your coworker uncomfortable?

Can you use Vicious Mockery to win an argument or gain favours?

How to preserve electronics (computers, iPads and phones) for hundreds of years

Can I cause damage to electrical appliances by unplugging them when they are turned on?

How do you make your own symbol when Detexify fails?

Stack Interview Code methods made from class Node and Smart Pointers

Does the reader need to like the PoV character?

How do I tell my boss that I'm quitting soon, especially given that a colleague just left this week

How would you translate "more" for use as an interface button?

How to explain what's wrong with this application of the chain rule?

Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

Why is the "ls" command showing permissions of files in a FAT32 partition?

Is there any evidence that Cleopatra and Caesarion considered fleeing to India to escape the Romans?

What does Apple's new App Store requirement mean

Why Shazam when there is already Superman?

What is Cash Advance APR?

What's the name of the logical fallacy where a debater extends a statement far beyond the original statement to make it true?

Why does this expression simplify as such?

How to convince somebody that he is fit for something else, but not this job?

I found an audio circuit and I built it just fine, but I find it a bit too quiet. How do I amplify the output so that it is a bit louder?

Giving feedback to someone without sounding prejudiced



Why does this expression simplify as such?


General linear hypothesis test statistic: equivalence of two expressionsSlope Derivation for the variance of a least square problem via Matrix notationCovariance of OLS estimator and residual = 0. Where is the mistake?A doubt on SUR modelWhy trace of $I−X(X′X)^-1X′$ is $n-p$ in least square regression when the parameter vector $beta$ is of p dimensions?Getting the posterior for Bayesian linear regression with a flat priorDistribution of coefficients in linear regressionFitted values and residuals: are they random vectors?Proving that Covariance of residuals and errors is zeroWhat is the relationship of long and short regression when we have an intercept?













3












$begingroup$


I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



$$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



    $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



    In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



      $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



      In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










      share|cite|improve this question











      $endgroup$




      I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



      $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



      In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.







      regression multiple-regression linear-model residuals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      Benjamin Christoffersen

      1,264519




      1,264519










      asked 6 hours ago









      DavidDavid

      24311




      24311




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            4 hours ago


















          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            4 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            4 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398797%2fwhy-does-this-expression-simplify-as-such%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            4 hours ago















          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            4 hours ago













          3












          3








          3





          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$



          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          dlnBdlnB

          82011




          82011











          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            4 hours ago
















          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            4 hours ago















          $begingroup$
          Ah. The key thing I was missing was what you wrote in the last line.
          $endgroup$
          – David
          4 hours ago




          $begingroup$
          Ah. The key thing I was missing was what you wrote in the last line.
          $endgroup$
          – David
          4 hours ago













          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            4 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            4 hours ago















          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            4 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            4 hours ago













          3












          3








          3





          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$



          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          BenBen

          26.8k230124




          26.8k230124







          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            4 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            4 hours ago












          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            4 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            4 hours ago







          2




          2




          $begingroup$
          Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
          $endgroup$
          – dlnB
          4 hours ago




          $begingroup$
          Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
          $endgroup$
          – dlnB
          4 hours ago




          1




          1




          $begingroup$
          @dlnb: Jinx! Buy me a coke!
          $endgroup$
          – Ben
          4 hours ago




          $begingroup$
          @dlnb: Jinx! Buy me a coke!
          $endgroup$
          – Ben
          4 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398797%2fwhy-does-this-expression-simplify-as-such%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

          Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

          Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org