Dominated convergence theorem - what sequence? The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral

Why did CATV standarize in 75 ohms and everyone else in 50?

What does "Its cash flow is deeply negative" mean?

Is there a difference between "Fahrstuhl" and "Aufzug"

What did we know about the Kessel run before the prequels?

Proper way to express "He disappeared them"

INSERT to a table from a database to other (same SQL Server) using Dynamic SQL

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Why is quantifier elimination desirable for a given theory?

How to install OpenCV on Raspbian Stretch?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Does soap repel water?

Some questions about different axiomatic systems for neighbourhoods

What is the value of α and β in a triangle?

Is there always a complete, orthogonal set of unitary matrices?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Is it convenient to ask the journal's editor for two additional days to complete a review?

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Can we say or write : "No, it'sn't"?

Math-accent symbol over parentheses enclosing accented symbol (amsmath)

How to avoid supervisors with prejudiced views?

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See



Dominated convergence theorem - what sequence?



The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral










2












$begingroup$


Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
$$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
    $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
    Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



    P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










      share|cite|improve this question









      $endgroup$




      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!







      integration limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Ivan V.Ivan V.

      911216




      911216




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



          This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



          And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              2 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              1 hour ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



            This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



            And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



              This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



              And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






                share|cite|improve this answer









                $endgroup$



                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Saucy O'PathSaucy O'Path

                6,2141627




                6,2141627





















                    2












                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago















                    2












                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago













                    2












                    2








                    2





                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$



                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 4 hours ago

























                    answered 4 hours ago









                    Alex OrtizAlex Ortiz

                    11.2k21441




                    11.2k21441











                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago
















                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago















                    $begingroup$
                    Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                    $endgroup$
                    – Ivan V.
                    2 hours ago




                    $begingroup$
                    Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                    $endgroup$
                    – Ivan V.
                    2 hours ago












                    $begingroup$
                    @IvanV.: Yes, that's correct!
                    $endgroup$
                    – Alex Ortiz
                    1 hour ago




                    $begingroup$
                    @IvanV.: Yes, that's correct!
                    $endgroup$
                    – Alex Ortiz
                    1 hour ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                    Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                    Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»