Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables

Why were 5.25" floppy drives cheaper than 8"?

Where would I need my direct neural interface to be implanted?

Are British MPs missing the point, with these 'Indicative Votes'?

Is it a bad idea to plug the other end of ESD strap to wall ground?

files created then deleted at every second in tmp directory

Finding the error in an argument

In Bayesian inference, why are some terms dropped from the posterior predictive?

Ambiguity in the definition of entropy

Car headlights in a world without electricity

Forgetting the musical notes while performing in concert

Bullying boss launched a smear campaign and made me unemployable

ssTTsSTtRrriinInnnnNNNIiinngg

What exactly is ineptocracy?

Can compressed videos be decoded back to their uncompresed original format?

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?

Sums of two squares in arithmetic progressions

How does a dynamic QR code work?

How to show a landlord what we have in savings?

How seriously should I take size and weight limits of hand luggage?

How to find if SQL server backup is encrypted with TDE without restoring the backup

Different meanings of こわい

Can I hook these wires up to find the connection to a dead outlet?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?



Finding the error in an argument


Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables













3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    2 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    2 hours ago















3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    2 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    2 hours ago













3












3








3





$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$




If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.







calculus multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







mathenthusiast

















asked 3 hours ago









mathenthusiastmathenthusiast

758




758











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    2 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    2 hours ago
















  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    2 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    2 hours ago















$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago





$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago





1




1




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
2 hours ago




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
2 hours ago












$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
2 hours ago




$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
2 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Nothing wrong. Just change it into



$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



Actually, a better way to say this is that



$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



Where I have clearly written down the restriction $y=x^2$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Nothing wrong. Just change it into



    $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



    Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



    Actually, a better way to say this is that



    $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



    Where I have clearly written down the restriction $y=x^2$.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Nothing wrong. Just change it into



      $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



      Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



      Actually, a better way to say this is that



      $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



      Where I have clearly written down the restriction $y=x^2$.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.






        share|cite|improve this answer









        $endgroup$



        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        Holding ArthurHolding Arthur

        1,360417




        1,360417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

            Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

            Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»