Logic. Truth of a negationWhy would definition not be proposition?What paradoxes are there for deontic detachment?Propositions lacking referents, and their truth-valuesDoes any person truly need anything?Is there a logic of married bachelors?Regarding Logic and Reductio Ad AbsurdumThe sea battle paradox and the soundness criterionFOL and Tarski's world logic connectives questionWhy does Hume believe that ought brings a new relation?Why don't two equivalent propositions contribute to the same semantics?

Why does Captain Marvel assume the people on this planet know this?

How do you like my writing?

Making a sword in the stone, in a medieval world without magic

Can't find the Shader/UVs tab

Built-In Shelves/Bookcases - IKEA vs Built

Why would one plane in this picture not have gear down yet?

The bar has been raised

Are babies of evil humanoid species inherently evil?

Virginia employer terminated employee and wants signing bonus returned

How do I deal with a powergamer in a game full of beginners in a school club?

Why doesn't this Google Translate ad use the word "Translation" instead of "Translate"?

Should I take out a loan for a friend to invest on my behalf?

Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?

Why is there a voltage between the mains ground and my radiator?

What Happens when Passenger Refuses to Fly Boeing 737 Max?

"One can do his homework in the library"

Can someone explain what is being said here in color publishing in the American Mathematical Monthly?

Is having access to past exams cheating and, if yes, could it be proven just by a good grade?

Word for a person who has no opinion about whether god exists

Things to avoid when using voltage regulators?

Does splitting a potentially monolithic application into several smaller ones help prevent bugs?

They call me Inspector Morse

Subset counting for even numbers

Accountant/ lawyer will not return my call



Logic. Truth of a negation


Why would definition not be proposition?What paradoxes are there for deontic detachment?Propositions lacking referents, and their truth-valuesDoes any person truly need anything?Is there a logic of married bachelors?Regarding Logic and Reductio Ad AbsurdumThe sea battle paradox and the soundness criterionFOL and Tarski's world logic connectives questionWhy does Hume believe that ought brings a new relation?Why don't two equivalent propositions contribute to the same semantics?













1















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question
























  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    51 mins ago















1















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question
























  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    51 mins ago













1












1








1








If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question
















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.







logic






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago









Frank Hubeny

8,72751549




8,72751549










asked 4 hours ago









Carlitos_30Carlitos_30

263




263












  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    51 mins ago

















  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    51 mins ago
















If your aunt gives you some money, would you go to the party ? :)

– rs.29
51 mins ago





If your aunt gives you some money, would you go to the party ? :)

– rs.29
51 mins ago










3 Answers
3






active

oldest

votes


















3














That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    44 mins ago












  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

    – lemontree
    37 mins ago












  • I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

    – Eliran
    25 mins ago











  • @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

    – lemontree
    20 mins ago



















0














The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






share|improve this answer























  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    2 hours ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    1 hour ago


















0















But if I am not paid, can we conclude that I am not going to the party tonight




That is not the negation.



As an easy example:



  • If it rains, then the ground will get wet.


  • If the ground does not get wet, then it does not rain.


Note that one implies the other.



What you instead constructed is the converse and its negation:



  • If the ground gets wet, then it rains.


  • If it does not rain, then the ground does not get wet.


This is a separate statement from the first one and the ground might for instance also get wet when turning on a sprinkler (or in your example people giving you money or you decide that you would like to go anyways).



What you seem to be asking is if the person meant to say more/ something else than they actually did: "If and only if I am getting paid, I will go to the party". Might be, might not be, but this is unrelated to logic.





share








New contributor




user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.



















    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "265"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61077%2flogic-truth-of-a-negation%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




    If I am paid today I'll go to the party tonight




    you can not deduce that




    If I am paid not today, I'll not go to the party tonight.




    In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



    Such an inference would require a stronger statement, namely "if and only if":




    If and only if I am paid today I'll go to the party tonight




    This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



    The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



    So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






    share|improve this answer










    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.




















    • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

      – Eliran
      44 mins ago












    • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

      – lemontree
      37 mins ago












    • I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

      – Eliran
      25 mins ago











    • @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

      – lemontree
      20 mins ago
















    3














    That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




    If I am paid today I'll go to the party tonight




    you can not deduce that




    If I am paid not today, I'll not go to the party tonight.




    In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



    Such an inference would require a stronger statement, namely "if and only if":




    If and only if I am paid today I'll go to the party tonight




    This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



    The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



    So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






    share|improve this answer










    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.




















    • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

      – Eliran
      44 mins ago












    • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

      – lemontree
      37 mins ago












    • I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

      – Eliran
      25 mins ago











    • @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

      – lemontree
      20 mins ago














    3












    3








    3







    That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




    If I am paid today I'll go to the party tonight




    you can not deduce that




    If I am paid not today, I'll not go to the party tonight.




    In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



    Such an inference would require a stronger statement, namely "if and only if":




    If and only if I am paid today I'll go to the party tonight




    This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



    The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



    So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






    share|improve this answer










    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.










    That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




    If I am paid today I'll go to the party tonight




    you can not deduce that




    If I am paid not today, I'll not go to the party tonight.




    In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



    Such an inference would require a stronger statement, namely "if and only if":




    If and only if I am paid today I'll go to the party tonight




    This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



    The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



    So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.







    share|improve this answer










    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|improve this answer



    share|improve this answer








    edited 59 mins ago





















    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 1 hour ago









    lemontreelemontree

    1315




    1315




    New contributor




    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.












    • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

      – Eliran
      44 mins ago












    • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

      – lemontree
      37 mins ago












    • I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

      – Eliran
      25 mins ago











    • @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

      – lemontree
      20 mins ago


















    • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

      – Eliran
      44 mins ago












    • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

      – lemontree
      37 mins ago












    • I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

      – Eliran
      25 mins ago











    • @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

      – lemontree
      20 mins ago

















    Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    44 mins ago






    Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    44 mins ago














    @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

    – lemontree
    37 mins ago






    @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.), so I'd see my claim as non-contradictory to your statement - what definition of "ambiguity" do you presuppose that contradicts a predication as "vague"?

    – lemontree
    37 mins ago














    I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

    – Eliran
    25 mins ago





    I was thinking of vagueness that is present in words like 'tall' and 'bald' that have borderline cases, and of ambiguity as in words like 'bank' or 'must' (i.e. epistemic, moral, etc). But I'm not familiar with how these terms are used in linguistics, only in philososphy. This captures what I mean: plato.stanford.edu/entries/ambiguity/#Vagu

    – Eliran
    25 mins ago













    @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

    – lemontree
    20 mins ago






    @Eliran I would refer to this specific property of adjectives like 'tall' as "relativity" (in the direction of "context-dependent"), but wouldn't object to dubbing this as a case of "vagueness" either. SEP is a respectable resource; there are hardly precise and universally agreed upon definitions of notions like "vagueness", or even what counts as a word. You could probably say that "vague" is vague (or ambiguous, if you want) itself :)

    – lemontree
    20 mins ago












    0














    The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



    There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



    For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



    Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






    share|improve this answer























    • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

      – Carlitos_30
      2 hours ago











    • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

      – Frank Hubeny
      1 hour ago















    0














    The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



    There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



    For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



    Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






    share|improve this answer























    • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

      – Carlitos_30
      2 hours ago











    • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

      – Frank Hubeny
      1 hour ago













    0












    0








    0







    The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



    There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



    For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



    Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






    share|improve this answer













    The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



    There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



    For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



    Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 3 hours ago









    Frank HubenyFrank Hubeny

    8,72751549




    8,72751549












    • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

      – Carlitos_30
      2 hours ago











    • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

      – Frank Hubeny
      1 hour ago

















    • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

      – Carlitos_30
      2 hours ago











    • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

      – Frank Hubeny
      1 hour ago
















    I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    2 hours ago





    I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    2 hours ago













    @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    1 hour ago





    @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    1 hour ago











    0















    But if I am not paid, can we conclude that I am not going to the party tonight




    That is not the negation.



    As an easy example:



    • If it rains, then the ground will get wet.


    • If the ground does not get wet, then it does not rain.


    Note that one implies the other.



    What you instead constructed is the converse and its negation:



    • If the ground gets wet, then it rains.


    • If it does not rain, then the ground does not get wet.


    This is a separate statement from the first one and the ground might for instance also get wet when turning on a sprinkler (or in your example people giving you money or you decide that you would like to go anyways).



    What you seem to be asking is if the person meant to say more/ something else than they actually did: "If and only if I am getting paid, I will go to the party". Might be, might not be, but this is unrelated to logic.





    share








    New contributor




    user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.
























      0















      But if I am not paid, can we conclude that I am not going to the party tonight




      That is not the negation.



      As an easy example:



      • If it rains, then the ground will get wet.


      • If the ground does not get wet, then it does not rain.


      Note that one implies the other.



      What you instead constructed is the converse and its negation:



      • If the ground gets wet, then it rains.


      • If it does not rain, then the ground does not get wet.


      This is a separate statement from the first one and the ground might for instance also get wet when turning on a sprinkler (or in your example people giving you money or you decide that you would like to go anyways).



      What you seem to be asking is if the person meant to say more/ something else than they actually did: "If and only if I am getting paid, I will go to the party". Might be, might not be, but this is unrelated to logic.





      share








      New contributor




      user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















        0












        0








        0








        But if I am not paid, can we conclude that I am not going to the party tonight




        That is not the negation.



        As an easy example:



        • If it rains, then the ground will get wet.


        • If the ground does not get wet, then it does not rain.


        Note that one implies the other.



        What you instead constructed is the converse and its negation:



        • If the ground gets wet, then it rains.


        • If it does not rain, then the ground does not get wet.


        This is a separate statement from the first one and the ground might for instance also get wet when turning on a sprinkler (or in your example people giving you money or you decide that you would like to go anyways).



        What you seem to be asking is if the person meant to say more/ something else than they actually did: "If and only if I am getting paid, I will go to the party". Might be, might not be, but this is unrelated to logic.





        share








        New contributor




        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.











        But if I am not paid, can we conclude that I am not going to the party tonight




        That is not the negation.



        As an easy example:



        • If it rains, then the ground will get wet.


        • If the ground does not get wet, then it does not rain.


        Note that one implies the other.



        What you instead constructed is the converse and its negation:



        • If the ground gets wet, then it rains.


        • If it does not rain, then the ground does not get wet.


        This is a separate statement from the first one and the ground might for instance also get wet when turning on a sprinkler (or in your example people giving you money or you decide that you would like to go anyways).



        What you seem to be asking is if the person meant to say more/ something else than they actually did: "If and only if I am getting paid, I will go to the party". Might be, might not be, but this is unrelated to logic.






        share








        New contributor




        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.








        share


        share






        New contributor




        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered 8 mins ago









        user494137user494137

        1




        1




        New contributor




        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        user494137 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Philosophy Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61077%2flogic-truth-of-a-negation%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

            Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

            Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org