Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

What does this icon in iOS Stardew Valley mean?

How to tell that you are a giant?

How can I make names more distinctive without making them longer?

Do I really need recursive chmod to restrict access to a folder?

Single word antonym of "flightless"

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?

How do I keep my slimes from escaping their pens?

Why light coming from distant stars is not discreet?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

How do pianists reach extremely loud dynamics?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

Why are Kinder Surprise Eggs illegal in the USA?

Why did the rest of the Eastern Bloc not invade Yugoslavia?

What would be the ideal power source for a cybernetic eye?

Echoing a tail command produces unexpected output?

Why do we bend a book to keep it straight?

Identifying polygons that intersect with another layer using QGIS?

List of Python versions

English words in a non-english sci-fi novel

What's the meaning of 間時肆拾貳 at a car parking sign

Is the Standard Deduction better than Itemized when both are the same amount?

Fundamental Solution of the Pell Equation



Ring Automorphisms that fix 1.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?










2












$begingroup$


This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.



Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:



$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$



I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.



    Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:



    $$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$



    I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.



      Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:



      $$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.










      share|cite|improve this question









      $endgroup$




      This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.



      Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:



      $$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.







      abstract-algebra ring-theory field-theory galois-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      Solarflare0Solarflare0

      9813




      9813




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          $$
          2phi(frac32) = phi(3) = 3phi(1) = 3
          implies
          phi(frac32) =frac32
          $$

          Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.



            For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:



            • $phi$ fixes $0$ and $1$, by definition.


            • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


            • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


            • $phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.



            More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              $$
              2phi(frac32) = phi(3) = 3phi(1) = 3
              implies
              phi(frac32) =frac32
              $$

              Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                $$
                2phi(frac32) = phi(3) = 3phi(1) = 3
                implies
                phi(frac32) =frac32
                $$

                Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  $$
                  2phi(frac32) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac32) =frac32
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                  share|cite|improve this answer









                  $endgroup$



                  $$
                  2phi(frac32) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac32) =frac32
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  lhflhf

                  168k11172405




                  168k11172405





















                      1












                      $begingroup$

                      Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.



                      For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:



                      • $phi$ fixes $0$ and $1$, by definition.


                      • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                      • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                      • $phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.



                      More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.



                        For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:



                        • $phi$ fixes $0$ and $1$, by definition.


                        • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                        • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                        • $phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.



                        More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.



                          For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:



                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.



                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.






                          share|cite|improve this answer









                          $endgroup$



                          Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.



                          For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:



                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.



                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          60056005

                          37.1k752127




                          37.1k752127



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                              Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                              Antonio De Lisio Carrera Referencias Menú de navegación«Caracas: evolución relacional multipleja»«Cuando los gobiernos subestiman a las localidades: L a Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA) en la frontera Colombo-Venezolana»«Maestría en Planificación Integral del Ambiente»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»«Conózcanos»«Caracas: evolución relacional multipleja»«La Metrópoli Caraqueña: Expansión Simplificadora o Articulación Diversificante»