Planopulvinulina Clasificación Bibliografía Menú de navegación

Géneros de RotaliidaGéneros de Rotaliida s.s.Géneros de foraminíferos bentónicos


foraminífero bentónicoSestronophorinaeEponididaeDiscorboideaRotaliinaRotaliidaespecie-tipoPaleógenoActualidad























Symbol question.svg

 

Planopulvinulina

Rango temporal: Paleógeno - Reciente
Taxonomía

Reino:

Protista

Filo:

Rhizaria

Clase:

Foraminifera

Orden:

Rotaliida
Suborden:
Rotaliina
Superfamilia:
Discorboidea

Familia:

Eponididae
Subfamilia:
Sestronophorinae

Género:

Planopulvinulina
Schubert, 1921
Especies

Planopulvinulina dispansa
Planopulvinulina queraltensis


Planopulvinulina es un género de foraminífero bentónico de la Subfamilia Sestronophorinae, de la Familia Eponididae, de la Superfamilia Discorboidea, del Suborden Rotaliina[1]​ y del Orden Rotaliida.[2]​ Su especie-tipo es Pulvinulina dispansa. Su rango cronoestratigráfico abarca desde el Paleógeno hasta la Actualidad.



Clasificación


Planopulvinulina incluye a las siguientes especies:[3][4][5]


  • Planopulvinulina dispansa

  • Planopulvinulina queraltensis


Bibliografía



  1. Loeblich, A.R., Jr. y Tappan, H. (1987). Foraminiferal general and their clasification. Van Nostrand Reinhold Company (ed.), 2 vol., 1-970, 1-212 + 847 láminas.


  2. Loeblich, A.R., Jr. y Tappan, H. (1992). Present Status of Foraminiferal Classification. Studies in Benthic Foraminifera en Benthos'90, Sendai (1990), Tokai University Press, 93-102.


  3. Encyclopedia of the Life, en http://eol.org/


  4. World Modern Foraminifera Database, en http://www.marinespecies.org/foraminifera/index.php


  5. Classifications Browser en
    http://www.ubio.org/browser/classifications.php?conceptID=13894357&expand=1&namebankID= Página 1 de 134









Popular posts from this blog

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Eliminatorias de Conmebol para la Copa Mundial de Fútbol de 2006 Índice Tabla de posiciones final Partidos Goleadores Repesca Intercontinental Clasificados Véase también Referencias Enlaces externos Menú de navegación2:0 (1:0)2:2 (2:0)4:1 (2:1)5:0 (2:0)1:2 (1:1)0:3 (0:3)2:1 (1:0)4:0 (2:0)4:1 (1:1)1:0 (1:0)2:1 (1:1)0:1 (0:1)2:1 (1:0)3:0 (0:0)1:1 (0:1)2:1 (0:0)0:1 (0:1)0:01:1 (0:1)3:3 (2:0)0:2 (0:1)1:0 (0:0)0:3 (0:1)0:00:2 (0:2)2:1 (1:1)0:1 (0:0)1:3 (0:2)2:1 (1:0)3:1 (1:0)3:2 (3:0)0:00:05:0 (3:0)1:1 (0:1)1:3 (0:1)1:0 (0:0)3:1 (3:0)1:0 (0:0)0:04:2 (3:0)1:0 (0:0)1:1 (1:0)2:5 (0:2)2:0 (0:0)0:01:1 (1:0)0:00:03:1 (1:1)3:2 (2:1)1:0 (1:0)2:1 (0:0)1:0 (0:0)1:0 (0:0)0:01:1 (0:1)1:2 (0:0)5:2 (2:2)1:0 (0:0)3:1 (2:0)2:1 (1:0)1:0 (0:0)2:2 (1:2)1:1 (0:0)3:1 (2:0)2:0 (0:0)1:1 (0:1)5:0 (1:0)4:1 (2:0)0:03:0 (2:0)2:1 (1:0)3:1 (3:0)4:1 (2:1)1:0 (1:0)4:1 (1:0)1:2 (1:1)5:0 (4:0)3:2 (1:0)0:00:1 (0:0)1:1 (1:0)1:1 (0:1)2:0 (0:0)1:0 (0:0)0:1 (0:1)0:03:0 (1:0)4:1 (3:0)ReporteReporteGoleadores de las Eliminatorias Sudamericanas 2006.Eliminatorias Sudamericanas 2006 - FIFAEliminatorias Sudamericanas 2006 - RSSSF

Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal