C++ debug/print custom type with GDB : the case of nlohmann json libraryHow to inspect std::string in GDB with no source code?How to pass normal param as well as template param in a template function in C++?How do I get my IDE to provide the C++ libraries?Why can I not call reserve on a vector of const elements?Cannot get min_element to work in C++Linker error trying to embed v8LNK2019: unresolved external symbol in C++Valgrind complaining possible memory leak in std string's new operatorName mangling confusion in LLVMclang++ memory sanitizer reports use-of-uninitialized-valueDebug std containers with gdb not working

The screen of my macbook suddenly broken down how can I do to recover

Is there any references on the tensor product of presentable (1-)categories?

Why can Carol Danvers change her suit colours in the first place?

Delivering sarcasm

Problem with TransformedDistribution

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

Does a 'pending' US visa application constitute a denial?

Not using 's' for he/she/it

Open a doc from terminal, but not by its name

How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?

Why did the EU agree to delay the Brexit deadline?

Why electric field inside a cavity of a non-conducting sphere not zero?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

Is it improper etiquette to ask your opponent what his/her rating is before the game?

How do you make your own symbol when Detexify fails?

Why should universal income be universal?

On a tidally locked planet, would time be quantized?

Redundant comparison & "if" before assignment

Melting point of aspirin, contradicting sources

Strong empirical falsification of quantum mechanics based on vacuum energy density

Where does the bonus feat in the cleric starting package come from?

Added a new user on Ubuntu, set password not working?

Longest common substring in linear time



C++ debug/print custom type with GDB : the case of nlohmann json library


How to inspect std::string in GDB with no source code?How to pass normal param as well as template param in a template function in C++?How do I get my IDE to provide the C++ libraries?Why can I not call reserve on a vector of const elements?Cannot get min_element to work in C++Linker error trying to embed v8LNK2019: unresolved external symbol in C++Valgrind complaining possible memory leak in std string's new operatorName mangling confusion in LLVMclang++ memory sanitizer reports use-of-uninitialized-valueDebug std containers with gdb not working













10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = "bar", "barz";


What I would like to have in GDB:



(gdb) p foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.



Current behavior



(gdb) p foo
$1 =
m_type = nlohmann::detail::value_t::object,
m_value =
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315


(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 =
_M_t =
_M_impl =
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> =
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = <No data fields>, <No data fields>,
<std::_Rb_tree_key_compare<std::less<void> >> =
_M_key_compare = <No data fields>
,
<std::_Rb_tree_header> =
_M_header =
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
,
_M_node_count = 5
, <No data fields>











share|improve this question
























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    32 mins ago















10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = "bar", "barz";


What I would like to have in GDB:



(gdb) p foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.



Current behavior



(gdb) p foo
$1 =
m_type = nlohmann::detail::value_t::object,
m_value =
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315


(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 =
_M_t =
_M_impl =
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> =
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = <No data fields>, <No data fields>,
<std::_Rb_tree_key_compare<std::less<void> >> =
_M_key_compare = <No data fields>
,
<std::_Rb_tree_header> =
_M_header =
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
,
_M_node_count = 5
, <No data fields>











share|improve this question
























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    32 mins ago













10












10








10








I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = "bar", "barz";


What I would like to have in GDB:



(gdb) p foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.



Current behavior



(gdb) p foo
$1 =
m_type = nlohmann::detail::value_t::object,
m_value =
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315


(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 =
_M_t =
_M_impl =
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> =
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = <No data fields>, <No data fields>,
<std::_Rb_tree_key_compare<std::less<void> >> =
_M_key_compare = <No data fields>
,
<std::_Rb_tree_header> =
_M_header =
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
,
_M_node_count = 5
, <No data fields>











share|improve this question
















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = "bar", "barz";


What I would like to have in GDB:



(gdb) p foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.



Current behavior



(gdb) p foo
$1 =
m_type = nlohmann::detail::value_t::object,
m_value =
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315


(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 =
_M_t =
_M_impl =
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> =
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = <No data fields>, <No data fields>,
<std::_Rb_tree_key_compare<std::less<void> >> =
_M_key_compare = <No data fields>
,
<std::_Rb_tree_header> =
_M_header =
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
,
_M_node_count = 5
, <No data fields>








c++ json gdb pretty-print nlohmann-json






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 56 mins ago







LoneWanderer

















asked 6 hours ago









LoneWandererLoneWanderer

1,122825




1,122825












  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    32 mins ago

















  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    32 mins ago
















You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
32 mins ago





You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
32 mins ago












1 Answer
1






active

oldest

votes


















14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested":
"bar": "barz"





Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer

























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested":
"bar": "barz"





Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer

























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago
















14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested":
"bar": "barz"





Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer

























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago














14












14








14







I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested":
"bar": "barz"





Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer















I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo

"flex" : 0.2,
"awesome_str": "bleh",
"nested":
"bar": "barz"





Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None






share|improve this answer














share|improve this answer



share|improve this answer








edited 49 mins ago

























answered 6 hours ago









LoneWandererLoneWanderer

1,122825




1,122825












  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago


















  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago

















That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago






That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago




















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org