Divisibility of sum of multinomialsInteger-valued factorial ratiosPerron number distributionDesign constraint systems over the realsOn “The Average Height of Planted Plane Trees” by Knuth, de Bruijn and Rice (1972)Montgomery's conjecture and lower bound on certain Fourier transform.Distribution of the evaluation (at a non-trivial root of -1) of polynomials with small coefficientsCombinatorialProbabilistic Proof of Stirling's ApproximationGeneralizing Kasteleyn's formula even more?Derive a theoretical bound about coding with a partial eavesdropperTartaglia distribution

Divisibility of sum of multinomials


Integer-valued factorial ratiosPerron number distributionDesign constraint systems over the realsOn “The Average Height of Planted Plane Trees” by Knuth, de Bruijn and Rice (1972)Montgomery's conjecture and lower bound on certain Fourier transform.Distribution of the evaluation (at a non-trivial root of -1) of polynomials with small coefficientsCombinatorialProbabilistic Proof of Stirling's ApproximationGeneralizing Kasteleyn's formula even more?Derive a theoretical bound about coding with a partial eavesdropperTartaglia distribution













6












$begingroup$


Let $n, m$ and $t$ be positive integers. Define the multi-family of sequences
$$S(n,m,t)=sum_k_1+cdots+k_n=mbinommk_1,dots,k_n^t$$
where the sum runs over non-negative integers $k_1,dots,k_n$. These numbers are related to average distances (from the origin) of uniform unit-step random walks on the plane.




QUESTION. Is it always true that $n$ divides $S(n,m,t)$?




Observe that $S(n,m,1)=n^m$.










share|cite|improve this question











$endgroup$
















    6












    $begingroup$


    Let $n, m$ and $t$ be positive integers. Define the multi-family of sequences
    $$S(n,m,t)=sum_k_1+cdots+k_n=mbinommk_1,dots,k_n^t$$
    where the sum runs over non-negative integers $k_1,dots,k_n$. These numbers are related to average distances (from the origin) of uniform unit-step random walks on the plane.




    QUESTION. Is it always true that $n$ divides $S(n,m,t)$?




    Observe that $S(n,m,1)=n^m$.










    share|cite|improve this question











    $endgroup$














      6












      6








      6


      3



      $begingroup$


      Let $n, m$ and $t$ be positive integers. Define the multi-family of sequences
      $$S(n,m,t)=sum_k_1+cdots+k_n=mbinommk_1,dots,k_n^t$$
      where the sum runs over non-negative integers $k_1,dots,k_n$. These numbers are related to average distances (from the origin) of uniform unit-step random walks on the plane.




      QUESTION. Is it always true that $n$ divides $S(n,m,t)$?




      Observe that $S(n,m,1)=n^m$.










      share|cite|improve this question











      $endgroup$




      Let $n, m$ and $t$ be positive integers. Define the multi-family of sequences
      $$S(n,m,t)=sum_k_1+cdots+k_n=mbinommk_1,dots,k_n^t$$
      where the sum runs over non-negative integers $k_1,dots,k_n$. These numbers are related to average distances (from the origin) of uniform unit-step random walks on the plane.




      QUESTION. Is it always true that $n$ divides $S(n,m,t)$?




      Observe that $S(n,m,1)=n^m$.







      nt.number-theory co.combinatorics soft-question






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago







      T. Amdeberhan

















      asked 1 hour ago









      T. AmdeberhanT. Amdeberhan

      18.3k229132




      18.3k229132




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          We count the number of $t$-tuples $(xi_1,ldots,xi_t)$ of the colorings of $1,ldots,m$ with $n$ given colors, for which any two colorings use the same multisets of colors. If $M$ is the number of such tuples in which 1 is colored red in the coloring $xi_1$ (red is one of our $n$ colors), the total number of $t$-tuples equals $ncdot M$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327456%2fdivisibility-of-sum-of-multinomials%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            We count the number of $t$-tuples $(xi_1,ldots,xi_t)$ of the colorings of $1,ldots,m$ with $n$ given colors, for which any two colorings use the same multisets of colors. If $M$ is the number of such tuples in which 1 is colored red in the coloring $xi_1$ (red is one of our $n$ colors), the total number of $t$-tuples equals $ncdot M$.






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              We count the number of $t$-tuples $(xi_1,ldots,xi_t)$ of the colorings of $1,ldots,m$ with $n$ given colors, for which any two colorings use the same multisets of colors. If $M$ is the number of such tuples in which 1 is colored red in the coloring $xi_1$ (red is one of our $n$ colors), the total number of $t$-tuples equals $ncdot M$.






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                We count the number of $t$-tuples $(xi_1,ldots,xi_t)$ of the colorings of $1,ldots,m$ with $n$ given colors, for which any two colorings use the same multisets of colors. If $M$ is the number of such tuples in which 1 is colored red in the coloring $xi_1$ (red is one of our $n$ colors), the total number of $t$-tuples equals $ncdot M$.






                share|cite|improve this answer









                $endgroup$



                We count the number of $t$-tuples $(xi_1,ldots,xi_t)$ of the colorings of $1,ldots,m$ with $n$ given colors, for which any two colorings use the same multisets of colors. If $M$ is the number of such tuples in which 1 is colored red in the coloring $xi_1$ (red is one of our $n$ colors), the total number of $t$-tuples equals $ncdot M$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 33 mins ago









                Fedor PetrovFedor Petrov

                51.9k6122239




                51.9k6122239



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327456%2fdivisibility-of-sum-of-multinomials%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                    Are there any comparative studies done between Ashtavakra Gita and Buddhim?How is it wrong to believe that a self exists, or that it doesn't?Can you criticise or improve Ven. Bodhi's description of MahayanaWas the doctrine of 'Anatta', accepted as doctrine by modern Buddhism, actually taught by the Buddha?Relationship between Buddhism, Hinduism and Yoga?Comparison of Nirvana, Tao and Brahman/AtmaIs there a distinction between “ego identity” and “craving/hating”?Are there many differences between Taoism and Buddhism?Loss of “faith” in buddhismSimilarity between creation in Abrahamic religions and beginning of life in Earth mentioned Agganna Sutta?Are there studies about the difference between meditating in the morning versus in the evening?Can one follow Hinduism and Buddhism at the same time?Are there any prohibitions on participating in other religion's practices?Psychology of 'flow'

                    Where is the suspend/hibernate button in GNOME Shell? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)No suspend option in UI on Bionic BeaverHow can I set sleep mode in ubuntu18.04 LTS and what is the short cut key to do so?17.10 suspend not availableUbuntu 18.04 LTS missing sleep optionUbuntu 18.04 LTS - missing suspend option when power button is pressedHow to put Thinkpad X1 Extreme to sleep in Ubuntu 18.10?Suspend Button in interactive power button menu18.04 - Keep programs running after logging outway to disable Hibernate from within gconf-editor so button disappears?How can I hibernate from GNOME Shell?How can I hibernate/suspend from the command line and do so at a specific timeNo permission to suspend/hibernate after upgrading to 12.10MATE - Missing Suspend and Hibernate buttons, pressing power button shutdowns system immediatelyUbuntu 14.04: Suspend, Hibernate and Suspend-hybrid in the menu?Change “power-button-action” comand for “hibernate” option in GNOME 3.18Shutdown / Power off button does always go to suspend on 17.10Hibernate after suspend stopped working in 17.10Why doesn't the keyboard screenshot button work on Ubuntu with GNOME shell?