Ridge McKeither Referencias Enlaces externos Menú de navegaciónRidge McKeither se estrenará profesionalmente con Melilla BaloncestoFicha del jugador

Nacidos en 1988HombresBaloncestistas de VirginiaBaloncestistas de la Liga LEBBaloncestistas del Club Melilla BaloncestoBaloncestistas de los UTC Mocs


DanvilleVirginia16 de julio1988estadounidensebaloncestoEuropaMelilla BaloncestoLEB Oroespañola
























Ridge McKeither
Datos personales
Nombre completo
Ridge Lamont McKeither
Nacimiento
Danville, Virginia, Estados UnidosFlag of the United States.svg Estados Unidos
16 de julio de 1988 (30 años)
Nacionalidad(es)
Estadounidense
Altura
1,98 m (6 ft 6 in)
Peso
109 kg (240 lb)
Carrera
Deporte
Baloncesto
Equipo universitario
Chattanooga
Club
Opentach Bàsquet Pla
Liga
LEB Plata
Posición
Alero

Ridge Lamont McKeither (Danville, Virginia, 16 de julio de 1988) es un jugador estadounidense de baloncesto profesional.


Tras formarse como jugador en varias universidades de Estados Unidos, en 2011 da el salto a Europa para fichar por el Melilla Baloncesto de la liga LEB Oro española, en la que sería su primera experiencia como profesional.
Para la temporada 2014/2015 ficha por el Opentach Bàsquet Pla de Pla de na Tesa, Marrachí, Mallorca; una recién ascendido a LEB Plata.[1]



Referencias



  1. Ridge McKeither se estrenará profesionalmente con Melilla Baloncesto



Enlaces externos


  • FEB.es Ficha del jugador


.mw-parser-output .mw-authority-control .navbox hr:last-childdisplay:none.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projectsdisplay:none.mw-parser-output .mw-authority-control .mw-mf-linked-projectsdisplay:flex;padding:0.5em;border:1px solid #c8ccd1;background-color:#eaecf0;color:#222222.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul limargin-bottom:0






  • Wd Datos: Q6108809







Popular posts from this blog

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Eliminatorias de Conmebol para la Copa Mundial de Fútbol de 2006 Índice Tabla de posiciones final Partidos Goleadores Repesca Intercontinental Clasificados Véase también Referencias Enlaces externos Menú de navegación2:0 (1:0)2:2 (2:0)4:1 (2:1)5:0 (2:0)1:2 (1:1)0:3 (0:3)2:1 (1:0)4:0 (2:0)4:1 (1:1)1:0 (1:0)2:1 (1:1)0:1 (0:1)2:1 (1:0)3:0 (0:0)1:1 (0:1)2:1 (0:0)0:1 (0:1)0:01:1 (0:1)3:3 (2:0)0:2 (0:1)1:0 (0:0)0:3 (0:1)0:00:2 (0:2)2:1 (1:1)0:1 (0:0)1:3 (0:2)2:1 (1:0)3:1 (1:0)3:2 (3:0)0:00:05:0 (3:0)1:1 (0:1)1:3 (0:1)1:0 (0:0)3:1 (3:0)1:0 (0:0)0:04:2 (3:0)1:0 (0:0)1:1 (1:0)2:5 (0:2)2:0 (0:0)0:01:1 (1:0)0:00:03:1 (1:1)3:2 (2:1)1:0 (1:0)2:1 (0:0)1:0 (0:0)1:0 (0:0)0:01:1 (0:1)1:2 (0:0)5:2 (2:2)1:0 (0:0)3:1 (2:0)2:1 (1:0)1:0 (0:0)2:2 (1:2)1:1 (0:0)3:1 (2:0)2:0 (0:0)1:1 (0:1)5:0 (1:0)4:1 (2:0)0:03:0 (2:0)2:1 (1:0)3:1 (3:0)4:1 (2:1)1:0 (1:0)4:1 (1:0)1:2 (1:1)5:0 (4:0)3:2 (1:0)0:00:1 (0:0)1:1 (1:0)1:1 (0:1)2:0 (0:0)1:0 (0:0)0:1 (0:1)0:03:0 (1:0)4:1 (3:0)ReporteReporteGoleadores de las Eliminatorias Sudamericanas 2006.Eliminatorias Sudamericanas 2006 - FIFAEliminatorias Sudamericanas 2006 - RSSSF

Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal