Shut 'Em Down Lista de canciones Menú de navegación

Álbumes de 1998Álbumes de Onyx


Onyx1998





Shut 'Em Down es también el título de una canción de Public Enemy, publicada en 1991 en su disco Apocalypse '91...The Enemy Strikes Black y remezclada para su álbum de 2002 Revolverlution..








Shut 'Em Down

Álbum de Onyx
Publicación
2 de junio de 1998
Género(s)
Hardcore rap
Discográfica
Def Jam
Productor(es)
DJ Scratch

Cronología de Onyx




All We Got Iz Us (1995)
Shut 'Em Down
Bacdafucup Part II (2002)

Shut 'Em Down es el tercer álbum del grupo de rap Onyx, editado en 1998.



Lista de canciones


  1. "It Was Onyx (Skit)" - 0:48

  2. "Raze It Up" - 4:00

  3. "Street Nigguz" - 4:54

  4. "Shut 'Em Down" feat DMX (rapero) - 3:58

  5. "Broke Willies" - 3:49

  6. "For Nothin' (Skit)" - 0:18

  7. "Rob and Vic" - 4:54

  8. "Face Down" - 4:40

  9. "Cops (Skit)" - 0:51

  10. "Conspiracy" - 4:31

  11. "Black Dust" - 3:54

  12. "One Nation (Skit)" - 0:37

  13. "React" feat 50 cent - 4:09

  14. "Veronica" - 4:29

  15. "Fuck That" - 4:58

  16. "Ghetto Starz" - 3:34

  17. "Take That" - 1:27

  18. "The Worst / Overshine" - 10:41

  19. "Shut 'Em Down (Remix)" - 4:14


Popular posts from this blog

Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

Eliminatorias de Conmebol para la Copa Mundial de Fútbol de 2006 Índice Tabla de posiciones final Partidos Goleadores Repesca Intercontinental Clasificados Véase también Referencias Enlaces externos Menú de navegación2:0 (1:0)2:2 (2:0)4:1 (2:1)5:0 (2:0)1:2 (1:1)0:3 (0:3)2:1 (1:0)4:0 (2:0)4:1 (1:1)1:0 (1:0)2:1 (1:1)0:1 (0:1)2:1 (1:0)3:0 (0:0)1:1 (0:1)2:1 (0:0)0:1 (0:1)0:01:1 (0:1)3:3 (2:0)0:2 (0:1)1:0 (0:0)0:3 (0:1)0:00:2 (0:2)2:1 (1:1)0:1 (0:0)1:3 (0:2)2:1 (1:0)3:1 (1:0)3:2 (3:0)0:00:05:0 (3:0)1:1 (0:1)1:3 (0:1)1:0 (0:0)3:1 (3:0)1:0 (0:0)0:04:2 (3:0)1:0 (0:0)1:1 (1:0)2:5 (0:2)2:0 (0:0)0:01:1 (1:0)0:00:03:1 (1:1)3:2 (2:1)1:0 (1:0)2:1 (0:0)1:0 (0:0)1:0 (0:0)0:01:1 (0:1)1:2 (0:0)5:2 (2:2)1:0 (0:0)3:1 (2:0)2:1 (1:0)1:0 (0:0)2:2 (1:2)1:1 (0:0)3:1 (2:0)2:0 (0:0)1:1 (0:1)5:0 (1:0)4:1 (2:0)0:03:0 (2:0)2:1 (1:0)3:1 (3:0)4:1 (2:1)1:0 (1:0)4:1 (1:0)1:2 (1:1)5:0 (4:0)3:2 (1:0)0:00:1 (0:0)1:1 (1:0)1:1 (0:1)2:0 (0:0)1:0 (0:0)0:1 (0:1)0:03:0 (1:0)4:1 (3:0)ReporteReporteGoleadores de las Eliminatorias Sudamericanas 2006.Eliminatorias Sudamericanas 2006 - FIFAEliminatorias Sudamericanas 2006 - RSSSF

Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal