Understanding Ceva's Theorem Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Ratio of areas of similar triangles given SSHow to calculate Fermat point in a triangle most efficiently?Prove this is a rectangleThe formula for the area of two triangles determined by the diagonals of a trapezoidUSAMO 2005, Problem3 (Triangle Geometry)- Is my solution correct?Corresponding side in similar trianglesMake isosceles triangle with matchsticksCutting a Triangle Through Its CentroidSimilar triangles and cross section integrals.Postulate or Theorem: The areas of similar plane figures are proportional their linear dimensions squared?

Bete Noir -- no dairy

Why light coming from distant stars is not discreet?

ListPlot join points by nearest neighbor rather than order

Identify plant with long narrow paired leaves and reddish stems

How to bypass password on Windows XP account?

Extract all GPU name, model and GPU ram

How does debian/ubuntu knows a package has a updated version

Why did the IBM 650 use bi-quinary?

3 doors, three guards, one stone

Naming the result of a source block

Why are Kinder Surprise Eggs illegal in the USA?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

Identifying polygons that intersect with another layer using QGIS?

How to answer "Have you ever been terminated?"

What is the meaning of the new sigil in Game of Thrones Season 8 intro?

Do I really need recursive chmod to restrict access to a folder?

Fundamental Solution of the Pell Equation

Why do people hide their license plates in the EU?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How to deal with a team lead who never gives me credit?

Why didn't this character "real die" when they blew their stack out in Altered Carbon?

What would be the ideal power source for a cybernetic eye?

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together



Understanding Ceva's Theorem



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Ratio of areas of similar triangles given SSHow to calculate Fermat point in a triangle most efficiently?Prove this is a rectangleThe formula for the area of two triangles determined by the diagonals of a trapezoidUSAMO 2005, Problem3 (Triangle Geometry)- Is my solution correct?Corresponding side in similar trianglesMake isosceles triangle with matchsticksCutting a Triangle Through Its CentroidSimilar triangles and cross section integrals.Postulate or Theorem: The areas of similar plane figures are proportional their linear dimensions squared?










5












$begingroup$


enter image description here



In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



I would like clarification in understanding the following step which states:



$fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










share|cite|improve this question











$endgroup$
















    5












    $begingroup$


    enter image description here



    In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



    I would like clarification in understanding the following step which states:



    $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



    How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










    share|cite|improve this question











    $endgroup$














      5












      5








      5


      1



      $begingroup$


      enter image description here



      In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



      I would like clarification in understanding the following step which states:



      $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










      share|cite|improve this question











      $endgroup$




      enter image description here



      In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



      I would like clarification in understanding the following step which states:



      $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)







      geometry proof-verification triangles






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      YuiTo Cheng

      2,48341037




      2,48341037










      asked 2 hours ago









      dragonkingdragonking

      384




      384




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



          $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



          Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



            $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



            Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



              $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



              Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



                $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



                Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






                share|cite|improve this answer









                $endgroup$



                $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



                $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



                Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                YuiTo ChengYuiTo Cheng

                2,48341037




                2,48341037



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Möglingen Índice Localización Historia Demografía Referencias Enlaces externos Menú de navegación48°53′18″N 9°07′45″E / 48.888333333333, 9.129166666666748°53′18″N 9°07′45″E / 48.888333333333, 9.1291666666667Sitio web oficial Mapa de Möglingen«Gemeinden in Deutschland nach Fläche, Bevölkerung und Postleitzahl am 30.09.2016»Möglingen

                    Virtualbox - Configuration error: Querying “UUID” failed (VERR_CFGM_VALUE_NOT_FOUND)“VERR_SUPLIB_WORLD_WRITABLE” error when trying to installing OS in virtualboxVirtual Box Kernel errorFailed to open a seesion for the virtual machineFailed to open a session for the virtual machineUbuntu 14.04 LTS Virtualbox errorcan't use VM VirtualBoxusing virtualboxI can't run Linux-64 Bit on VirtualBoxUnable to insert the virtual optical disk (VBoxguestaddition) in virtual machine for ubuntu server in win 10VirtuaBox in Ubuntu 18.04 Issues with Win10.ISO Installation

                    Torre de la Isleta Índice Véase también Referencias Bibliografía Enlaces externos Menú de navegación38°25′58″N 0°23′02″O / 38.43277778, -0.3838888938°25′58″N 0°23′02″O / 38.43277778, -0.38388889Torre de la Illeta de l’Horta o Torre Saleta. Base de datos de bienes inmuebles. Patrimonio Cultural. Secretaría de Estado de CulturaFicha BIC Torre de la Illeta de l’Horta. Dirección General de Patrimonio Cultural. Generalitat ValencianaLugares de interés. Ayuntamiento del CampelloTorre de la Isleta en CastillosNet.org